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Introduction

The problem of recovering an evolving signal from a set of
samples taken at different time instances is motivated by
research questions emerging in dynamical systems.
Lu, Veterli. Spatial super-resolution of a diffusion fieldby temporal oversampling

in sensing networks. IEEE Int. Conf. Acoustics, Speech and Signal Proc. 2009.

Sampling problems in dynamical systems: eg. sampling of air
pollution, wireless networks, temperature distribution over a
metropolitan area etc.

We state the problem of spatio-temporal sampling for
different classes of functions (signals), and provide specific
reconstruction results.
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What is Dynamical Sampling?

Let f describe the initial state of a physical system on domain D.
Over time, the system evolves to the state

ft = At f ,

where {At}t≥0 is a family of evolution operators.

at time instances ti : sampling sets Xi ⊂ D

SXi
- corresponding downsampling operator

(obtains insufficiently many samples for ’successful’ recovery)

The fundamental question in dynamical sampling

Is the recovery of the initial state f possible from the coarsely
under-sampled initial state and its altered states ft = At f at time
instances {ti : i = 1, · · · , L}?

Goal: Reconstruct f = f0 from

SX0(f ), SX1(At1f ), ...,SXL
(AtL

f ). (1)
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Conditions ...

... on evolution operators Ai = Ati , sampling sets Xi , number L of
repeated subsampling harvests, and sampling time instances ti

Recovery of the initial state f = f0 is possible, if we have:

IS Invertibility sampling property. Within a class of signals, any
signal h is associated with a samples data set {SXi

(Aihi )}
which uniquely determines h.

SS Stability sampling property. Within a class of signals, given
any two signals h, h̃, the following two norms,

‖h − h̃‖2p and
L∑

i=0

‖SXi
Ai (h − h̃)‖2`p are equivalent.
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Convolution operators in Shift-Invariant Spaces (I)

Example: If supp f̂ ∈ [−1/2, 1/2] and f ∈ L1 ∩ L2(R), then

(Shannon Sampling Thm) f (x) =
∑

k

f (k)sinc(x − k).

Let ϕ ∈ {f |
∑

k∈Z sup0≤x≤1|f (x + k)| <∞} ∩ C .

Shift-Invariant space

V (ϕ) := {c ∗ ϕ =
∑
k∈Z

ckϕ(· − k) | c = (ck ) ∈ `2(Z)} (2)

If 0 < M1 ≤
∑
k∈Z
|ϕ̂(ξ + k)|2 ≤ M2 <∞, then

every f ∈ V (ϕ) can be recovered from the samples f (Z).

Question: Let f = f0 ∈ V (ϕ) and fj = a ∗ · · · ∗ a ∗ f ; can we
recover f from subsamples {f (mZ), f1(mZ), f2(mZ), . . . }?

Answer: Yes.
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Convolution operators in Shift-Invariant Spaces (II)

Fact: Let Φj = ϕj |Z, where ϕj = aj ∗ ϕ, 0 ≤ j ≤ L. Then

Φ̂j ∈ C ([0, 1]).

Theorem

Every f ∈ V (ϕ) can be recovered in a stable way from the
measurements yj = (aj ∗ f )|mZ, 0 ≤ j ≤ m − 1, if and only if
detAm(ξ) 6= 0 for all ξ ∈ [0, 1], where

Am(ξ) =


Φ̂0( ξm ) Φ̂0( ξ+1

m ) . . . Φ̂0( ξ+m−1
m )

Φ̂1( ξm ) Φ̂1( ξ+1
m ) . . . Φ̂1( ξ+m−1

m )
...

...
...

...

Φ̂m−1( ξm ) Φ̂m−1( ξ+1
m ) . . . Φ̂m−1( ξ+m−1

m )

 .

Proof:

Due to F(fj |mZ)(ξ) =
1

m

m−1∑
l=0

ĉ(
ξ + l

m
)Φ̂j (

ξ + l

m
). (3)
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Special case: Ai = A in a separable Hilbert space I
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Special case: Ai = A in a separable Hilbert space II
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Special case: Ai = A in a separable Hilbert space III
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Special case: Ai = A in a separable Hilbert space IV
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Frames = generalization of orthonormal bases

Frame definition

A sequence F = {f i}i∈I (I -count. index set) of H \ {0} is a frame
for H, if there exist 0 < C ≤ D <∞ such that

C‖f‖2 ≤
∑
i∈I

|〈f, fi 〉|2 ≤ D‖f‖2 for all f ∈ H. (4)

The frame operator Sf :=
∑

i∈I 〈f, fi 〉fi is invertible
For each frame F of H there exists at least one dual frame
G = {gi}i∈I , satisfying

f =
∑
i∈I

〈f, fi 〉gi =
∑
i∈I

〈f, gi 〉fi for all f ∈ H. (5)

The set {gi = S−1fi}i∈I is called the canonical dual frame.
The frame F is C -tight, if C = D in (4), and

f =
1

C

∑
i∈I

〈f, fi 〉fi =
1

C
Sf for all f ∈ H. (6)
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Dynamical Frames and Canonical Duals in Hilbert spaces

Consider G = {fi}i∈I ⊆ H, and a bounded operator A : H → H.

If F L
G (A) := ∪i∈I{Aj fi |f ∈ G}Li

j=0 is a frame for H, (7)

then we call (7) a dynamical frame, gen. by A and fi .

Theorem 1

Let F L
G (A) be a dynamical frame for H, with frame operator S .

The canonical dual frame of F L
G (A) is also dynamical, generated by

B := S−1AS and gi = (S−1fi ) i.e.

f =
∑
i∈I

Li∑
j=0

〈f,Aj fi 〉B jgi for every f ∈ H. (8)
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Dynamical Frames and Scalability
(joint work with Y. Kim, arxiv: 1608.05622v1)

If the frame F is tight then S−1 ≡ I . In general, computing S−1

can be a challenging problem.
If there exist scaling coefficients wi ≥ 0, i ∈ I , such that
Fw := {wi fi}i∈I is a tight frame, then we call F a scalable frame.

Property

Say F L
G (A) = ∪i∈I{Aj fi |f ∈ G}Li

j=0 is a scalable frame; then

f =
∑
i∈I

Li∑
j=0

w2
ij 〈f,Aj fi 〉Aj fi for every f ∈ H. (9)

Example: e1 =

(
1
0

)
, A =

(
cos(2π/3) − sin(2π/3)
sin(2π/3) cos(2π/3)

)
.

{e1,Ae1,A2e1} is a scalable frame for R2 (mercedes).
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Dynamical Frames and Scalability in Finite Dimensions

Let H = Rn, and let {ej}n
j=1 be the std orthonormal basis of H.

Theorem *

Let G = {ek1 , . . . , ekp}, p < n, and L = (L1, . . . , Lp) ∈ Zp
+.

Let A be an operator on H.
If B is a unitary operator on H, then TFAE

∪p
s=1{A

jeks}
Ls
j=0 is a (scalable) frame

∪p
s=1{C

jgs}Ls
j=0 is a (scalable) frame,

where C := B−1AB, and gs := B−1eks , s = 1, . . . , p.

Note: if A = URUT is a Schur decomposition of A, with a unitary
matrix U and a matrix of Schur form R, then TFAE

(i) ∪p
s=1{A

jeks}
Ls
j=0 is a (scalable) frame for H,

(ii) ∪p
s=1{R

jvs}Ls
j=0 is a (scalable) frame for H.
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Scalable Dynamical Frames: Normal Operators in Rn (I)

Let A = UDUT be a normal operator on H, D = diag(a1, . . . , an),
U-orthogonal;
let elk , k = 1, . . . , s, s ≤ n, be standard basis vectors for H.
TFAE:

FG(A) = ∪p
s=1{Ajels | j = 0, 1, . . . , Ls} is a scalable frame

∪p
s=1{D jvs | j = 0, 1, . . . , Ls} is a scalable frame for Rn

where vs = UTels = (xs(1), . . . , xs(n))T , 1 ≤ s ≤ p.

The scaling coefficients ws,t of FG(A) are solutions to (*):

p∑
s=1

‖xs(i)‖2
[
w2

s,0 + w2
s,1‖ai‖2 + · · ·+ w2

s,Ls
‖an‖2Ls

]
= 1,

p∑
s=1

xs(i)x̄s(j)
[
w2

s,0 + w2
s,1ai āj + · · ·+ w2

s,Ls
(ai āj )

Ls

]
= 0,

for all i , j = 1, . . . , n, i 6= j .
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Example 1: Let

D =

 1 0 0
0 1 0
0 0 −1

 , ; v1 =

 1
−1
1

 , v2 =

 1
1
−1

 .

The frame {v1,Dv1, v2,Dv2} is a scalable frame in R3, with
weights wk,i = 0.5, 0 ≤ i ≤ 1, 1 ≤ k ≤ 2.

Example 2: Let v1 = (x1, x2, x3)T , v2 = (y1, y2, y3)T and
D = diag(a, b, 0), where ab 6= 0, 1 + ab < 0. Set

x1 = ± 1

a
√

b2(a2 + 1)− a2(1 + ab)
, x2 = ± 1

b
√

a2(b2 + 1)− b2(1 + ab)
,

x3 = ±
√
−(1 + ab)

ab
, and y3 = ±

√
1− x23 , y1 = −x1x3

y3
, y2 = −x2x3

y3
.

Then {v1,Av1, v2,Av2,A2v2} is a tight frame of R3.
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Scalable Dynamical Frames: Normal Operators in Rn (II)

Theorem 2

Let D = diag(a1, · · · , an), where a1, . . . , an ∈ R, and let
vs = (xs(1), . . . , xs(n))T ∈ H, s ∈ {1, · · · , p}, p ≥ 1.

The sequence ∪p
s=1{D jvs | j = 0, 1, . . . , Ls} is a scalable frame for

H if and only if there exist scaling coefficients ws,0,ws,1, . . . ,ws,Ls ,
s = 1, . . . , p, which satisfy conditions (*).

{D jv}L
j=0 is never a scalable frame for Rn ( we need p ≥ 2)
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Scalable Dynamical Frames: Normal Operators in Rn (III)

By Theorem* and Theorem 2, the following result holds true:

Theorem 3

Let A be a normal operator for H and A = UDUT be the
orthogonal diagonalization of A. Let elk , 1 ≤ k ≤ s be standard
basis vectors for some s ≤ n.

The sequence ∪s
k=1{Ajelk | 0 ≤ j ≤ Ls} is a scalable frame of H if

an only if there there exist scaling coefficients wk,0,wk,1, . . . ,wk,Lk
,

1 ≤ k ≤ s, which satisfy conditions (*).
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Scalable Dynamical Frames: Block-Diagonal Operators (I)

Example

Let a, b, c , d ∈ R, a > 0 and abcd 6= 0. Let

A =

(
a c
b d

)
∈ R2×2, e1 =

(
1
0

)
∈ R2.

{e1,Ae1,A2e1} is a scalable frame for R2 iff 0 < − ac
bd < 1.

Let A =


a c 0 0
b d 0 0
0 0 a c
0 0 b d

 , f1 =


1
0
0
0

 , f2 =


0
0
1
0

 , 0 < − ac

bd
< 1.

Then {f1,Af1,A2f1, f2,Af2,A2f2} is a scalable frame for R4.
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Scalable Dynamical Frames: Block-Diagonal Operators (II)

Theorem 4

Let Fi be a (scalable) frame for Rni , i = 1, . . . p. Let

G :=

 F1 0 0

0
. . . 0

0 0 Fp

 . (10)

Then the system G is a (scalable) frame for RN ,
N = n1 + . . .+ np.

Let As ∈ Rns×ns , 1 ≤ s ≤ p,
∑p

s=1 ns = N, and let A ∈ RN×N be
a block-diagonal matrix with A1, . . . ,Ap on its diagonal.

Let v ∈ Rns . v ∈ Rns is well-embeded in f ∈ RN w.r.t. A, if
f(j) = v(i), when j = n1 + . . . ns + i , and f(j) = 0, otherwise.
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Scalable Dynamical Frames: Block-Diag. Operators (III)

Theorem 5

Let As ∈ Rns×ns , 1 ≤ s ≤ p, where n1 + · · ·+ np = N. Let
A ∈ HN×N be a block-diagonal matrix constructed by distributing
matrices A1, . . . ,Ap along its diagonal.
Let fs,1, . . . , fs,ms ∈ RN , 1 ≤ s ≤ p be the ms well-embedded
vectors vs,1 . . . , vs,ms ∈ Rns , 1 ≤ s ≤ p.

TFAE

{Aj
svs,k | 1 ≤ k ≤ ms}

Ls,k

j=0 is a (scalable) frame of Rns ,
1 ≤ s ≤ p.

∪p
s=1{A

j fs,k | 1 ≤ k ≤ ms}
Ls,k

j=0 is a (scalable) frame of RN .
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