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Introduction

@ The problem of recovering an evolving signal from a set of
samples taken at different time instances is motivated by
research questions emerging in dynamical systems.

Lu, Veterli. Spatial super-resolution of a diffusion fieldby temporal oversampling

in sensing networks. |EEE Int. Conf. Acoustics, Speech and Signal Proc. 2009.

@ Sampling problems in dynamical systems: eg. sampling of air
pollution, wireless networks, temperature distribution over a
metropolitan area etc.

@ We state the problem of spatio-temporal sampling for
different classes of functions (signals), and provide specific
reconstruction results.
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What is Dynamical Sampling?

Let f describe the initial state of a physical system on domain D.
Over time, the system evolves to the state

f.—t = Atf7
where {A;}+>0 is a family of evolution operators.
@ at time instances t;: sampling sets X; C D

@ Sx, - corresponding downsampling operator
(obtains insufficiently many samples for 'successful’ recovery)

The fundamental question in dynamical sampling

Is the recovery of the initial state f possible from the coarsely
under-sampled initial state and its altered states f; = A;f at time
instances {t; :i=1,--- L}?

Goal: Reconstruct f = fy from

SXO(f)7 5X1 (Atl f)? b SXL(AfL f) (l)BALLSTAT[
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. on evolution operators A; = A, sampling sets X;, number L of
repeated subsampling harvests, and sampling time instances t;

Recovery of the initial state f = fy is possible, if we have:

IS Invertibility sampling property. Within a class of signals, any
signal h is associated with a samples data set {Sx (A;h;)}
which uniquely determines h.

SS Stability sampling property. Within a class of signals, given
any two signals h, h, the following two norms,

L
Ilh — /~7||,2, and Z |Sx.Ai(h — h)||2> are equivalent.
i=0
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Convolution operators in Shift-Invariant Spaces (1)
Example: If supp f € [-1/2,1/2] and f € L' N L3(R), then

(Shannon Sampling Thm)  f(x) = Z f(k)sinc(x — k).
k

Let ¢ € {f[> jez Supo<x<i1lf(x + k)| < oo} C.

Shift-Invariant space

V(p) ={cxp =) apl(-—k) | c=(a) € £(2)} (2)

kEZ

0 If 0 < My <) A6+ k) < Mz < oo, then

kEZ
every f € V() can be recovered from the samples f(Z).

Question: Let f =fy € V(¢) and fj=ax---*ax*f; can we
recover f from subsamples {f(mZ), fi(mZ), L(mZ),...}?

BALL STATE
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Answer: Yes.
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Convolution operators in Shift-Invariant Spaces (I1)

Fact: Let ®; = ¢j|z, where ¢; = @ xp, 0<j<L. Then
®; e C([0,1]).

Theorem

Every f € V() can be recovered in a stable way from the
measurements y; = (& * f)|mz, 0 <j < m—1, if and only if
det A, (&) # 0 for all £ € [0, 1], where

éo(é) 690(:;1) ‘130(?':,71)
bi(5) by b (EL8=
anty= | P B S
Smor(s) Pmoa(5H) bpmor(S0=)
Proof:
m—1
1 E+1 ~ 41
D t f m = — ¢ (b —_—). BALL STATE
ue 0 f( J| Z)(é-) m Iio C( m ) J( m ) (3)UI\IVIR)ITV
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Special case: A; = A in a separable Hilbert space |

Let H be a separable (complex) Hilbert space, f € ‘H be an
unknown vector and f,, € H be the state of the system at time n.

fO:fa fn:Afn—lenf \

where A4 is a known bounded operator on H.

Given the measurements:

(A"f.g) for 0<n < L(g), g€G (1)

where G is a countable set of vectors in H and L : G — NU {oo} a
function.

Main problem:

Recover the vector f € H from measurements (1)
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Special case: A; = A in a separable Hilbert space I

e

AYF come L [ T ..

ABf ciBereaeieaiiie Wecvranenrannnn BWercvrannarniaas -

A% eemeeeen Wevrcnrnnns Wesrrenenrannan Werrerararaaas .

Af oemee. Weernnnnnn Weceraneaiaean Beceranea e u-.

Fooeemeaaan Mo iinnnnn Wevrenrarnnnnns Becvrannnneninnns ...
g1 92 g3

In particular we are interested in stable recovery when for every

feH

(A"f.g)* < CollfII?

alfr<y 3

9€G 0<n< L(g)

where C'1,C5 > 0 are absolute constants.



Special case: A; = A in a separable Hilbert space Il

Using the fact that
(Af,g9) =(f.A"g)
we get the following equivalent formulation.

Any f € H can be recovered from {(A" f, g>}qeg,0<n.<L(g) if
and only if the system ‘ -

{(A")"g}geg.0<n<L(g)

is complete in H.

Any f € H can be recovered from {{A"f, 9i) },cq.0<n<r(g) N
a stable way if and only if the system

{(A")" g} geg.0<n<L(g)

is a frame in H.

Roza ACESKA Time - Evolving Signal Analysis



Special case: A; = A in a separable Hilbert space IV

If {A"g},e6, n>0 is a frame in H then for every f € H,

(A)"f = 0asn — oo, (2)

Corollary

For any unitary operator A : H — H and any set of vectors
G CH, {A"g}4eg. n>0 is not a frame in H.

We don't know if (2) is a sufficient condition for the existence of a
frame by iterations.

If A is a contraction (i.e. ||A|| <1), and (2) holds, then we can
choose G C H such that {A"g}ycg, n>0 is a Parseval frame.
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Frames = generalization of orthonormal bases

Frame definition

A sequence F = {f;};c; (/-count. index set) of H \ {0} is a frame
for H, if there exist 0 < C < D < 0o such that

ClIfI> < D I(F,:)|> < DIIf||* for all f € 7. (4)
iel

The frame operator Sf := ./ (f,f;)f; is invertible
For each frame F of H there exists at least one dual frame

G = {gi}ies, satisfying
F=> (f.figi=> (f.g)fiforallfecH. (5)

iel i€l

The set {g; = S1f;};c/ is called the canonical dual frame.
The frame F is C-tight, if C = D in (4), and
1 1
f=2D (Ffi)fi=Sfforallfe. (6)

UNIVERSITY.
icl
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Dynamical Frames and Canonical Duals in Hilbert spaces

Consider G = {f;}ic; € H, and a bounded operator A : H — H.
If Fé(A) = Ui {Afi|f € Q}jio is a frame for H, (7)

then we call (7) a dynamical frame, gen. by A and f;.
Theorem 1

Let Fé‘(A) be a dynamical frame for #, with frame operator S.
The canonical dual frame of Fé(A) is also dynamical, generated by
B:=S"'AS and g; = (S71f;) i.e.
L;
f= Z Z(f, Af\Blg; for every f € H. (8)
icl j=0

BALL STATE
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Dynamical Frames and Scalability

(joint work with Y. Kim, arxiv: 1608.05622v1)

If the frame F is tight then S~ = /. In general, computing S~!
can be a challenging problem.

If there exist scaling coefficients w; > 0, i € I, such that

Fvw := {w;f;}ic; is a tight frame, then we call F a scalable frame.

Property
Say F5(A) = Uje {Alf|f € Q}J-L;O is a scalable frame; then

f—zz wi f, AV AU, for every f € . 9)

iel j=0

amnic o= (3 ). A= (T603 S ) W

{e1, Ae1, A%e; } is a scalable frame for R? (mercedes). UNIVERSITY
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Dynamical Frames and Scalability in Finite Dimensions

Let # = R", and let {e;}7_; be the std orthonormal basis of H.

Theorem *

Let G = {ex,,...,ex}, p<n and L= (Ly,...,L,) € Z%.
Let A be an operator on H.
If B is a unitary operator on H, then TFAE

o UP_ {Afeks} o is a (scalable) frame
° Ué’:l{Cfgs}j:O is a (scalable) frame,
where C := B~1AB, and gs = B‘leks, s=1,...,p

Note: if A= URUT is a Schur decomposition of A, with a unitary
matrix U and a matrix of Schur form R, then TFAE

(i) U 1{Afeks} o is a (scalable) frame for H,
(ii) Uspzl{Rfvs}}zo is a (scalable) frame for H.

BALL STATE
UNIVERSITY.
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Scalable Dynamical Frames: Normal Operators in R” (1)

Let A= UDUT be a normal operator on H, D = diag(ay,...,an),

U-orthogonal;
lete,, k=1,...,s, s <n, be standard basis vectors for H.

TFAE:
o Fg(A)=UP_{Ae,|j=0,1,...,Ls} is a scalable frame
o UP_ {Divs|j=0,1,...,Ls} is a scalable frame for R”
where vs = UTe;, = (xs(1),...,x(n))7, 1 <s < p.

The scaling coefficients ws ; of Fg(A) are solutions to (*):

P
112 2 2 2 2 2L
Sl [wlo + whyllail + - + w2 flanl 2] =1,

s=1

p
> xR0 |Who + wliaid + o+ wly (ai)"] =0,
s=1

BALL STATE
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Example 1: Let

0 , V1 = -1 , Vo = 1

0 0 -1 1 -1
The frame {v1, Dvy,vo, Dvs} is a scalable frame in R3, with
weights w; = 0.5, 0<i<1,1<k<2.

Example 2: Let vi = (X1,X2,X3)T, Vo = ()/1,)/27)/3)7— and
D = diag(a, b,0), where ab # 0, 1 4+ ab < 0. Set
+ L + L
= N Xo = s
a/b2 (@ +1)—a(Ltab) - by/a(b? + 1) — b2(1 + ab)

—(1+ab S
ab ¥3

Then {v1, Avy,vo, Avo, A%, } is a tight frame of R3.

X1

BALL STATE
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Scalable Dynamical Frames: Normal Operators in R” (Il)

Theorem 2

Let D = diag(a1,- - ,an), where aj,...,a, € R, and let

Vs = (xs(1),...,xs(n))T € H,se{l,---,p}, p>1.

The sequence UP_, {D/vs | j=0,1,...,Ls} is a scalable frame for
H if and only if there exist scaling coefficients ws o, ws1,..., ws (.,

s=1,...,p, which satisfy conditions (*).

° {DJ'V}J’--:0 is never a scalable frame for R” ( we need p > 2)

BALL STATE
UNIVERSITY.
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Scalable Dynamical Frames: Normal Operators in R” (111)

By Theorem* and Theorem 2, the following result holds true:

Theorem 3

Let A be a normal operator for H and A= UDUT be the
orthogonal diagonalization of A. Let e, 1 < k < s be standard
basis vectors for some s < n.

The sequence Us_,{Ae;, | 0 <j < Ls} is a scalable frame of H if
an only if there there exist scaling coefficients wy o, Wi 1, ..., Wk 1,,
1 < k < s, which satisfy conditions (*).

BALL STATE
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Scalable Dynamical Frames: Block-Diagonal Operators (1)

Example
Let a,b,c,d € R, a> 0 and abcd # 0. Let

_ a ¢ 2x2 _ 1 2
a(] 5 )em, a=(})er

{e1, Aey, A%e;} is a scalable frame for R? iff 0 < —= =

a c 00 1 0
b d 0 0 0 0 ac

Let A= 00 a c 1 = 0 = 1 70<—w<1.
0 0 b d 0 0

Then {f1, Af, A%f;, fo, Afp, A%f,} is a scalable frame for R*.

BALL STATE
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Scalable Dynamical Frames: Block-Diagonal Operators (I1)

Theorem 4

Let F; be a (scalable) frame for R", i =1,...p. Let

(10)

o
o
1o o

Then the system G is a (scalable) frame for RV,
N=n+...+np

Let A; e R"™*"™, 1 <s<p, >P ns=N,andlet Ae RNXN he
a block-diagonal matrix with Ay, ..., A, on its diagonal.

Let v e R™. v € R" is well-embeded in f € RN w.rt. A, if
BALL STATE
f(j) = v(i), whenj=ni +...ns + i, and f(j) = 0, otherwise. UnvERsITY



Scalable Dynamical Frames: Block-Diag. Operators (1)

Theorem 5

Let As € R™*"™ 1 <s<p, where ny +---+n, = N. Let
A € HN*N be a block-diagonal matrix constructed by distributing

matrices Ay, ..., A, along its diagonal.
Let fs1,...,fsm, € RN 1<s< p be the ms well-embedded
vectors Vs1...,Vsm, € R™, 1 <s<p.
TFAE
o {Avg,|1<k< ms}J-L;‘S is a (scalable) frame of R™,
1<s<p.

o UP_{Af., | 1<k< ms}jLig is a (scalable) frame of RV.

BALL STATE
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