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Weighted Bergman polynomials

Let Ω ⊂ C be a bounded region and w ≥ 0 in L1(Ω), not
identically zero.

The weighted Bergman orthonormal polynomials
Pn, n ∈ N, are defined by∫

Ω
PnPkw dm = δn,k ,

where the leading coefficient is normalized to be positive:

Pn(z) = κnz
n + a

(n)
n−1z

n−1 + . . .+ a
(n)
0 , κn > 0.

Here, dm stands for Lebesgue measure. Note we only consider
absolutely continuous measures of orthogonality.
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Background

When w ≡ 1, orthonormal polynomials were studied on Jordan
domains by Bochner, Carleman [1922], Bergman [1950], Fuks
[1951], Rosenbloom& Warschawski [1955], Smirnov& Lebedev
[1964].

Their research was related to conformal mapping and to
Faber’s program of constructing generalized Taylor series.

Closely connected to these works is the issue of the density of
polynomials in the holomorphic Bergman space that was
investigated by Keldys [1939], Markusevic& Farell [1942],
Dzrbasjan [1948], Mergelyan [1962], Saginjaw.
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Background cont’d

In recent years, still for w ≡ 1,

• Mina-Diaz [2008] contributed strong interior and exterior
asymptotics on analytic simply connected domains for weights
which are squared moduli of polynomials.

• Stylianopoulos [2009] derived exterior asymptotics on
piecewise analytic simply connected domains with corners.

• Gustafsson, Putinar, Saff and Stylianopoulos [2009] obtained
asymptotic bounds for such polynomials on finite unions of
analytic Jordan domains (archipelagoos).

• Saff, Stahl, Stylianopoulos and Totik [2014] deal with multiply
connected analytic domains (archipelogoos with lakes).
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Further motivation

• Investigation of the Bergman shift: f → zf on the closure of
polynomials in L2(w). In the basis P0,P1, . . . , its matrix is of
Hessenberg form:

M =


M11 M12 M13 · · ·
M21 M22 M23 · · ·
0 M32 M33 · · ·
0 0 M43 · · ·
...

...
...

...

 .

Properties of Pn connect to spectral properties of M because
Pn(z) = det(z − πnMπn) where πn is projection onto
polynomials of degree < n.

• Other incentives come from Heele-Shaw flows, particle
systems, ...
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w 6≡ 1: Korovkin’s result

Korovkin [1947] obtained exterior and interior asymptotics for the
case of a simply connected analytic domain Ω when the weight is
of the form |Φ′g |2 in a neighborhood of ∂Ω, where
Φ : C \ Ω→ C \ D is the conformal map with Φ′(∞) > 0 and g is
holomorphic nonvanishing in a neighborhood of C \ Ω.
The result reads

Pn(z) =

(
n + 1

π

)1/2 Φn(z)

g(z)
(1 + O(λn)), 0 ≤ λ < 1,

for z in a neighborhood of C \ Ω .
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w 6≡ 1 cont’d: P. Suetin’s result

The case of Hölder-continuous strictly positive weights on the
closure of an analytic simply connected domain was studied by
Suetin [1959-1964].
He obtained asymptotics, locally uniformly for z outside the convex
hull of Ω:

Pn(z) =

(
n + 1

π

)1/2

Φn(z)Φ′(z)S−(z) (1 + O ((log n/n)α))

where α is the Hölder exponent of w and

S−(z) = exp

{
1

4π

∫
T

e iθ + Φ(z)

e iθ − Φ(z)
logw(Φ−1(e iθ)) dθ

}
is the exterior Szegő function of w|∂Ω.
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where α is the Hölder exponent of w and

S−(z) = exp

{
1

4π

∫
T

e iθ + Φ(z)

e iθ − Φ(z)
logw(Φ−1(e iθ)) dθ

}
is the exterior Szegő function of w|∂Ω.
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The Szegő function

• The exterior Szegő function of a weight w1 ∈ L1(∂Ω) with
log |w1| ∈ L1(∂Ω):

S−w1
(z) = exp

{
1

4π

∫
T

e iθ + Φ(z)

e iθ − Φ(z)
logw(Φ−1(e iθ)) dθ

}
, z /∈ Ω,

recurs in every asymptotics of orthogonal polynomials (also in
non-Hermitian orthogonality).

• In fact S−w1
is the largest (in modulus) nonvanishing analytic

function in C \ Ω whose nontangential maximal function lies
in L2(∂Ω) and whose nontangential limit on ∂Ω has squared
modulus 1/w1 a.e..

• The interior Szegő function S+
w1

(z) is defined similarly for
z ∈ Ω using the interior conformal map Φ1, and this time
|S+

w1
|2 = w1 on ∂Ω.

• S±w1
solve a “Riemann-Hilbert problem”:

S−w1
(ξ) =

(
S+
w1(Φ−1

1 ◦ Φ(ξ))
)−1

, ξ ∈ ∂Ω.
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w 6≡ 1: improvements

• Smirnov& Lebedev [1964] improved Korovkin’s result by
allowing g to have a zero at infinity (of arbitrary multiplicity).

• Mina-Diaz (2010) has relaxed the zero condition in Korovkin’s
result to non-zeroing in a neighborhood of T.

• Simanek [2012] obtained ratio asymptotics for large |z | and
analytic simply connected Ω, for weights which are conformal
images of certain product measures on the unit disk D:

w =
(
ν(θ)× τ(ρ)

)
◦ ϕ, ϕ : Ω→ D.

• Mina-Diaz and Simanek [2013] gave necessary conditions on
w for exterior asymptotics to hold.
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w 6≡ 1: further remarks

• The results by Korovkin, Suetin, Mina-Diaz and Simanek
substantiate the claim that asymptotics of Pn depends only on
the behavior of w close to ∂Ω.

• Saff and Simon speculated that ratio asymptotics exists for |z |
large, as soon as w does not vanish too much in a
neighborhood of ∂Ω, at least for reasonably smooth Ω
(generalization of a theorem by Rakhmanov on the circle).

• Defining what “does not vanish too much” means is part of
the question.
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Scholium

• Exterior asymptotics we mentioned are similar to Szegő
asymptotics of orthogonal polynomials on ∂Ω with respect to
the weight w|∂Ω, except for the extra factor

√
(n + 1)/π.

• In fact all these results can be thought of as perturbations of
the 1-D case, where the influence of the “germ” of the weight
close to the boundary asymptotically dominates all other
phenomena.

• It is to ensure this dominancy that nonzeroing assumptions on
w to the boundary ∂Ω are made.
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Outline

• In this talk we report on fairly weak assumptions on the
weight under which exterior asymptotics hold as before.

• We pay a price in that we no longer provide rates of
convergence. In fact, with the assumptions we make,
convergence can be arbitrarily slow.

• We mainly discuss analytic Jordan domains Ω, meaning that
∂Ω is the image of the unit circle T under a map analytic and
univalent in a neighborhood of T. Results extend to
C 1,α-domains, as will e stresed later.
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Assumptions

• Ω is an analytic Jordan domain. In particular, Ψ := Φ−1

extends conformally into a map from {|z | > 1− ε} onto
C \ Ω1, where Ω1 ⊂ Ω.

• Putting Ψr (e iθ) := Ψ(re iθ), we assume that w ◦Ψr converges
in Lp(T) as r → 1, for some p > 1. If F is the limit, we put
w1 := F ◦ Φ.

• Putting Γη := Ψ({|z | = η}) for 1− ε < η < 1, we assume
that

sup
1−ε<η<1

∫
Γη

log− w log+(log− w) dσ < +∞.

This last condition expresses that the weight does not vanish
too much in the vicinity of ∂Ω.
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Main result

Theorem
Under the previous assumptions it holds that

Pn(z) =

(
n + 1

π

)1/2

Φn(z)Φ′(z)S−w1
(z)(1 + o(1))

locally uniformly outside the convex hull of Ω, with S−w1
the

exterior Szegő function of w1.



Main result

Theorem
Under the previous assumptions it holds that

Pn(z) =

(
n + 1

π

)1/2

Φn(z)Φ′(z)S−w1
(z)(1 + o(1))

locally uniformly outside the convex hull of Ω, with S−w1
the
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An example

• Let {zk} be a sequence of points in Ω.

• Let {ak} be a summable family of positive numbers.

• Put

w(z) :=

(
Σ∞k=1ak log

(
log

∣∣∣∣diamΩ + 1

z − zk

∣∣∣∣))−1

.

• Then the theorem applies to w on Ω.

• When {zk} is dense in Ω, then w vanishes in the
neighborhood of every point.
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Structure of the proof

It has three steps:

• First we derive an upper bound for κn. This rests on direct
estimation of some appropriate integral and requires no
assumption on the weight.

• Next we derive an asymptotic lower bound for κn. There, we
use the characterization:

κn = sup{κ; ∃ P(z) = κzn+an−1z
n−1+· · ·+a0, ‖P‖L2(w) ≤ 1}.

This rests on constructing a sequence of auxiliary polynomials
{Qn} whose leading coefficient asymptotically matches the
upper bound and whose norm in L2(w) is asymptotically 1.
There assumptions on w are used.

• At this point, we will know that

lim inf
n→+∞

κn√
n + 1

= (πGw1)−1/2 ,

where Gw1 = exp{
∫
T log(w1 ◦Ψ)} is the geometric mean.
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Structure of the proof cont’d

• Having at our disposal a sequence of polynomials Qn with
dominant coefficient αn ∼ κn whose L2(w) norm is
asymptotically 1, we use a technique of Widom:

‖Pn − Qn‖2
L2(w) = ‖Pn‖2

L2(w) + ‖Qn‖2
L2(w) − 2<〈Pn,Qn〉w

= 1 + ‖Qn‖2
L2(w) − 2

αn

κn
→ 0.

• By [Saff,Stahl,Stylianopoulos, Totik, 2012] [Simanek,2012]

|Pn/Qn−1| ≤ ‖Pn−Qn‖L2(w)d(z ,ConvΩ)+diamΩ)2/d2(z ,ConvΩ),

hence Pn ∼ Qn outside ConvΩ.

• Finally one checks by inspection that

Qn(z) =

(
n + 1

π

)1/2

znS−w1
(z){1 + o(1)}, z /∈ Ω.
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A closer look at the upper bound

Theorem
For Ω an analytic Jordan domain and w ≥ 0 a weight function in
L1(Ω), it holds that

lim sup
n→∞

κn
(capΩ)n+1

√
n + 1

≤ 1
√
π
(
ess supr→1− G

1/2
w◦Ψr

)
where cap indicates the logarithmic capacity.
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A closer look at the upper bound cont’d

Proof:
Let A1,R to be the annular region between Γ1 and ΓR , R < 1, and
consider the integral:

Jn :=

∫ 1

R
rdr

∫ 2π

0
e−2niθ

(
Pn ◦Ψr (e iθ)Ψ′(re iθ)/S−w◦Ψr

(e iθ)
)2

dθ.

On the one hand, it holds that

|Jn| ≤
∫ 1

R
rdr

∫ 2π

0
|Pn(Ψ(re iθ)|2w(Ψ(re iθ))|Ψ′(re iθ)|2 dθ

=

∫
A1,R

|P(ξ)|2w(ξ) dm(ξ) ≤ 1.



A closer look at the upper bound cont’d

Proof:
Let A1,R to be the annular region between Γ1 and ΓR , R < 1, and
consider the integral:

Jn :=

∫ 1

R
rdr

∫ 2π

0
e−2niθ

(
Pn ◦Ψr (e iθ)Ψ′(re iθ)/S−w◦Ψr

(e iθ)
)2

dθ.

On the one hand, it holds that

|Jn| ≤
∫ 1

R
rdr

∫ 2π

0
|Pn(Ψ(re iθ)|2w(Ψ(re iθ))|Ψ′(re iθ)|2 dθ

=

∫
A1,R

|P(ξ)|2w(ξ) dm(ξ) ≤ 1.



A closer look at the upper bound cont’d

Proof cont’d:
On the other hand, using the residue formula at infinity for Hardy
functions of class H1(C \ D), we get

Jn = 2π

∫ 1

R
r2n+1 dr

1

2iπ

∫
Tr

(
Pn(Ψ(ξ))

ξnS−w◦Ψr
(ξ)

)2
dξ

ξ

= 2πκ2
n(capΩ)2n+2

∫ 1

R
r2n+1Gw◦Ψr dr .

.

Finally, it is elementary that

lim sup
n→∞

(2n + 2)−1

∫ 1

R
r2n+1Gw◦Ψr dr ≤ ess sup

r→1−
G

1/2
w◦Ψr

.
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A closer look at the lower bound

We first consider the case where Ω = D, the unit disk.

Theorem
Let w ∈ L1(D) and assume that

w1 := lim
r→1−

wr exists in Lp(T), p > 1.

Then
lim inf
n→+∞

κn√
n + 1

≥ (πGw1)−1/2 ,

where the right-hand side may be finite or infinite depending
whether

∫
T logw1 > −∞ or

∫
T logw1 = −∞.
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About the proof

Recall the characterization:

κn = sup{κ; ∃ P(z) = κzn +an−1z
n−1 + · · ·+a0, ‖P‖L2(w) ≤ 1}.

The proof rests on the construction of a sequence of auxiliary
polynomial whose leading coefficient matches the lower bound and
whose norm in L2(w) is asymptotically 1. Such a sequence is given
by

Qn(e iθ) :=

(
n + 1

π

)1/2

e(n−kn)iθP+

(
e iknθS−1

w1,+(e−iθ)
)
.

Here P+ indicates analytic projection that selects Fourier
coefficients of non-negative index, and kn →∞ but kn/n→ 0.
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Here P+ indicates analytic projection that selects Fourier
coefficients of non-negative index, and kn →∞ but kn/n→ 0.
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About the proof cont’d

• In fact, the estimates are obtained first when w ≥ δ > 0. This
is because the convergence of the Fourier series of S−1

w1,+ then

takes place n L2p′ , 1/p + 1/p′ = 1.

• To remove the assumption that w ≥ δ > 0, we apply the
preceding case to w{m} := w + δm where δm ∈ (0, 1)→ 0 and
we use that κn increases when the measure decreases.

• Besides, the needed convergence

lim
m→∞

G
w
{m}
1

= Gw1

follows easily from dominated and monotone convergence
applied to the positive and negative parts of the functions.
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About the proof cont’d

To pass to analytic Ω, we use the Faber polynomials of the second
kind Fn, defined as the singular part at infinity of ΦnΦ′:

Φn(z)Φ′(z) = capn+1Ω zn + αn−1z
n−1 + · · ·+ α0 +

∞∑
j=1

βjz
−j

= Fn(z) +
∞∑
j=1

βjz
−j .

If we let
VR := Ψ({z : |z | > R}), R > R0.

we get by Cauchy’s theorem:

Fn(z) = Φn(z)Φ′(z) +
1

2iπ

∫
ΓR

Φn(ξ)Φ′(ξ)

ξ − z
dξ, z ∈ VR .

Then, a straightforward majorization gives us∣∣Fn(z)− Φn(z)Φ′(z)
∣∣ ≤ CRn, z ∈ VR . R > R0,
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About the proof cont’d

• Consider the test polynomial Qn associated with the weight
w ◦Ψ on D:

Qn(z) = αnz
n + γn−1z

n−1 + · · ·+ γn−knz
n−kn

• On Ω, we pick our test polynomial to be

Qn(z) = αnFn + γn−1Fn−1 + · · ·+ γn−knFn−kn .

• Qn is a polynomial of degree n with dominant coefficient(
n + 1

π

)1/2

G−1/2
w1 (cap(Ω))−(n+1) .

• Previous estimates on Fn and our choice of kn make Qn → 0
locally uniformly in Ω.

• Moreover, change of variable shows that

lim sup
n→∞

‖Qn‖L2(Ω∩VR1
,w) ≤ lim sup

n→∞
‖Qn‖L2(AR ,w◦ψ) ≤ 1.
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The role of the L log+ L condition

• The role of the condition

sup
1−ε<η<1

∫
Γη

log− w log+(log− w) dσ < +∞.

is to tie upper and lower estimates together by ensuring that

Gw1 = lim
r→1−

Gw◦Ψr .

• This depends on the following fact:
Lemma. Let hk be a bounded sequence in h1 that converges
pointwise a.e. to h on T. Then h ∈ h1 and hkdθ converges
weak-* to hdθ in M.
Here M.is the space of complex measure and h1 is the real
Hardy space. For positive functions, h ∈ h1 is equivalent to
h log+ h ∈ L1(T) y a theorem of Riesz and Zygmund.
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Generalizations

• The results extend to C 1,α-domains. In this case indeed, Ψ
extends to a quasi-conformal map on C:

∂̄Ψ(z) = µ(z)∂Ψ(z), µ(z) = 0 for z /∈ Ω,

and by a result of Dyn’kin

µ(z) = O
(

(|z | − 1)α
)

(asymptotic conformality on ∂Ω). This is enough to control
the surface integral contribution due to ∂̄Ψ when deforming
integration from ∂Ω to ΓR .
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Questions

• Question: can more general Lavrentiev domains also be
treated this way? These are domains for which the conformal
map extends quasi-conformally to C.

• Question: can the Lp convergence of w ◦Ψr be replaced by h1

convergence?

• Can one obtain rates?

• The techniques can also be used to give examples where κn
has no limit, hence there are are strong asymptotics. Can one
produce examples where there are no ratio asymptotics?
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