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Movable Singularities.

Example: Consider the differential equation

d2u<+ du 2__0
dx? dx ) 7

This equation has a general solution of the form
u(x) = log (Ax + B)

where A, B are arbitrary constants which can be determined
via initial conditions.
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Painlevé Equations.

There are 50 second order equations of the form

d?u du

a2 =)
where R is rational in u,uv’ and analytic in x, whose only
movable singularities are poles.
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dx?  2u(x)(u(x) — )(dx) xdx T ( b U(X)>
N yu)Ex) N du(x )((XU(X) +1) (Ps)
?u 1/ 1 1 1 du 1,1 L) du
dx2_2(ux)+u(X)1+ u(x) )(dx) _<X+X1+“(X)X)dx
u(x)(u(x u(x x—1 ox(x—1
W) (B Sl D)y



Painlevé ITII

In this talk, we’ll focus our attention on Ps,

2 2 / 2
du_ 1 (:5) _u(x)+au (X)—i_ﬂ—i-’yu?’(x)—i-ié a,f3,7,0 € C.

b X u(x)’

dx2 — u(x)

This is the simplest of the six Painlevé equations which has
a fixed singular point at x=0.

Remark
P3(Ds) : ~9#0; this is the generic choice,
P3(D7) : =0 or §=0 but not both,
P3(Dg) : ~v=d6d=0. Here, we can take a=[=4.
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Painlevé ITII

In this talk, we’ll focus our attention on Ps,

du 1 (du)z_u’(x)+au2(X)+5

dx2 — u(x)

)
+y3(x)+ —, «a,B3,7,6 €C.

- dx b X u(x)’

This is the simplest of the six Painlevé equations which has

a fixed singular point at x=0.

Remark
Up to a change of variables, P3(Dg) can be written as

dx?2 — u(x)

+ 4u3(x) — —.

d?u 1 [du)? (%) 4001 (x) + 4(1 — O4)
(&) ' )

_ 4
dx X X u(x
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Rational Solutions of Pj3

Generic solutions of P3 are highly transcendental.

However, P>-Ps all possess special solutions written in
terms of elementary and/or classical special functions.

Proposition. Let
©=n+m, O, =m-—n+1.

If P3 has a rational solution, then, n€Z or meZ.
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Rational Solutions of Pj3

Proposition. Let
©=n+m, ©O,r=m—n+1.

If P3 has a rational solution, then, n€Z or meZ.

Proof. Suppose u(x) is rational. Then, as x — 00, we may
write

u(x) = axP + O(xP71).

Plugging this into P3 gives a “dominant balance" when p=0,
and a*=1. oOr,

ux)=a+bx 14+ 0(x%) as x— oo
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Rational Solutions of Pj3

ux)=a+bx '+ 0(x7%) as x— oo
Plugging this back in gives b= a*(@y —1)/4—6g/4. A similar
computation near any pole xp #0 yields that

u(X)=2 = +0(1) as x— xp.

(x — x0)

Letting k €Z be the difference between number of poles with
residues 1/2 and —1/2,

k 51 1
X “(Oy —1)— —0y = 0.
2+a4(@ ) 4@0 0

When a® =1, this gives k=n; when a®= —1 this gives k= m.

8 /32



Rational Solutions of Pj3

Some more facts (Recall that ©g=n+m, O =m—n+1)

When n€Z or meZ (but not both), P3 has two rational
solutions.

When n=0,m¢Z, the rational solutions are u(x)=%l.
When m=0,n¢ 7, the rational solutions are u(x)= =i.

When m=n=0, then both u(x)==+1, u(x)=4+i are solutions.
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Backlund Transformations

To move between solutions, (@g=n+m, G, =m—n+1)

Inversion:

(u(x), ©0,000) - (1/u(x), 00 — 1,00 + 1),

/
I :(u(x), m,n)— (1/u(x), m,—n).

Rotation:

R :(u(x),©0,0) — (—iu(—ix), 00,2 — O),
R :(u(x), m, n) — (—iu(—ix), n, m).

1-Step:

G (u(x),©0,0) — (0(x),00+ 1,0, — 1),
G :(u(x), m,n) — (i(x), m,n+ 1)
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Backlund Transformations

To move between solutions, (©@pg=n+m, O =m—n+1)
1-Step:

G (u(x),©0,0c) — (0(x),00+ 1,0, — 1),
G (u(x), m,n) — (id(x), m,n+ 1)

_ xt'(x) + 2xu?(x) + 2x — 2(1 — Oso)u(x) — u(x)
u(x)(xt'(x) + 2xu?(x) + 2x + 20qu(x) + u(x))

V. I. Gromak, The solutions of Painlevé’s third equation, Differencial'nye Uravnenija (1973) 10 / 32
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Proposition. The result of applying the Backlund

transformation G to u(x)=1 n times is

un(x; m) == sn(x; m — 1)sp—1(x; m)

neN
sn(x; m)sp—1(x;m—1)’ ’
where {sp(x;m)}°2, are the Umemura Polynomials defined by
s_1(x;m) = so(x;m) =1 and

Sn+1(x; m)

(4x +2m + 1)s2(x; m) — sp(x; m)sh(x; m) — x(sa(x; m)sl (x; m) — (sh(x; m)2))'

255-1(x; m)

2H. Umemura, Painlevé equations in the past 100 years, Am. Math. Soc. Transl. (2001)
3P. A. Clarkson, The third Painlevé equation and associated special polynomials, J. Phys. A: Math.

Gen.(2003) 11/ 32
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n=20, m=0 n=20, m=1 n=20, m=1i/2 n=20, m=5/2

Zeros (blue)/poles (red) of u,(ny; m) where y = x/n. Courtesy of P. Miller.*

“Bothner, T.J., Miller, P.D., Sheng, Y.: Rational solutions of the Painlevé-Ill equation. Stud. Appl.
Math. (2018) 1o 3
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n =20, m = 0. Zeros (blue)/poles (red) of u,

x/n. Filled blue circles are zeros of s,

-0.55

(ny; m) when n =20, m =0 where
), unfilled are zeros of s,_1(x; m). Filled red

x:m—1
circles are zeros of s,(x; m), unfilled are zeros of s,_1(x; m— 1).
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un(0; m)

Theorem.® TLet ¢1(u) = p and define

. k
dok(p) = a1 () [102 = 25 = 1%, dakra() = dari) - - [104* — (20%)
J=1 o
Then,
n(0; m) = 2l = 1/2)bna(m +1/2)

dn(m—+1/2)¢pp—1(m—1/2)

5P. A. Clarkson,C.-K.Law,C.-H.Lin, An constructive proof for the Umemura polynomials for the
third Painlevé equation, arxiv:1609.00495, 2018 15 / 32



where

_ ¢n(m — 1/2)¢n—1(m + 1/2)

 pu(m+1/2)¢p_1(m—1/2)°
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Scaling Analysis

To “zoom in" on x=0, we write X:Z/n. The differential
equation becomes

d? 1 /du\? 1du 4u?
u:_ u ___u_f_L_FO(n*l)

dz2  u(z) \dz z dz z
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Scaling Analysis

To “zoom in" on x=0, we write x=2z/n. The differential
equation becomes

du 1 (du\® 1du  4u®+4
dz2  u(z)

auy~ lau 4u”+4 1
e + +O0(n™7)

z dz z

Conjecture. Fix meC\(m—{—%). There exists a solution of
P3 (Dg), w(z;m), so that

lim o = w(z; m) lim u % m = —wi(z;m)
ko 2k T e 2k 1 o
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ILimits of Frobenius’ Solutions

Theorem. Fix me C and let {v,(z;m)}%2, be a sequence of
solutions of P3(Dg) that are analytic at the origin z=0
and suppose that

lim vp(0; m) = €0 = Eoo,0(m) # 0.

n—oo

Then, there exists p>0 so that for all n sufficiently
large vp(z;m) is analytic for |z| <p and such that
Va(z;m) = veo(z;m) as n— oo uniformly for |z| <p, where
w(z) = Voo(z; m) solves P3 (D8) equation, is analytic at the
origin, and Ve(z;m)=¢&xp0-
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Application to Pj

Let v(x) = vp(x;m) :=up(x/n;m). Then,
v 1 /dv\? 1dv anv?(x) B 3 On
bl A (e A M A AV A n_ 1
dx? v (dx) xdx T T x Tt () + v(x)’ (1)
where 4 4 4 4
m m
Qn ::4+T’ Bn 324—77 Vn = 2 On 1= 2
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Initial Conditions

Recall that

n(m—1/2)¢p_1(m+1/2)

un(0; m) = bn(m+1/2)¢pp_1(m—1/2)

where ¢1(pu) =p and define

k k
dar(i) = don1 () [[(1* = (25 = 1)?),  darsa(w) = daw(p) - - [ (1 = (2)).
Jj=1

j=1

It follows that

i 2m+ 1w ) 2m+ )7
kll_)ngouzk(o;m):tan <( 2 ) ), kll_)rrgou2k+1(0;m):—cot(( 2 ) >
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Initial Conditions

k—00 4

Jim 21 (0; m)_¢3”<0hnjl)n>’ JEL“M+KOHW)=——an<cm”*‘nﬂ>

Corollary. Let meC\(Z+3) and denote by w(z;m) the
unique solution of P3 (Dg) with w(0;m)=tan ((2m+ 1)7/4).
Then

kll_}m Uk (2k ) = w(z; m),

z 1
| —Z o m)=——
gy 2] (2k +1' m) w(z; m)
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Initial Conditions

Corollary. Let meC\(Z+3) and denote by w(z;m) the
unique solution of P3 (Dg) with w(0;m)=tan((2m+1)7/4).
Then

Jim (2k ) = w(z; m),

z 1
| % )=
g P (2k +1' m) w(z; m)

Remark
If w(z) solves P3(Dg), then so does —1/w(z).
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Different Characterization.

Given meC and n€Z as well as x€ C\ {0} with —7w <arg(x) <,
we seek a 2x2 matrix Y(A) = Y,(\x,m) satisfying

Y(\) is analytic in C\ L.
Y(A\) has continuous boundary values on L\ {0} that satisfy

Yi(A) =Y_-(N)Iy(N). (2)

(mt Do
Y(\) =T as A— oo and YA (OFO=I72 — y () (7727 pnere
O =m—n+1, ©g=n+m, has a well-defined limit as A — 0.
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Jump Matrix

LYY oo | (1 YN oo
Iy(\) € rz—m : "G —m) ’
0 1 0 1
1 0
(m+1)/2 (m+1)/2
'V2W(A¢ )+(A¢ )-A_ne_bdx—xfﬂ 1
I’(% + m)
_e2mim 0
(m+1)/2 (m+1)/2
V 27T(>\J, )+(>\¢ )_ )\—ne—ix()\—)\_l) _e_27rim
I'(% + m)
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Connection with Pj3

If we write
YO =T+ AYE 02, YA = y§ 1 avd+ 0(\?)
Then, 5 )
_ —1Y1°,°12(X)
Y(?,ll(x) Y(?,12(X)7

where un(x;m) is the rational solution of P3 obtained by
applying Gromak'’s Bidcklund transformation to wu(x)=1 n times.

un(x; m)

5Bothner, T.J., Miller, P.D., Sheng, Y.: Rational solutions of the Painlevé-Ill equation. Stud. Appl.
Math. (2018) vt ) 30



Sn
One can check that
+ \—1 —1p,— 0 _ U
(Co) (87)  Coo S5 =1, N
CoSn(Cone) H(ST) 1 =1L Con R
SO
The Riemann-Hilbert o
Problem we have is not
adequate for studying se,
x — 0.

Contour L when x — 0.
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Circle Circle Circle.

This step is sponsored by
the identities

(S)7HST) = (CL ) H(—es) T,
() 7HSY )t =(Cq,) H(Ho3)C L,
(S75) 71 (SP) = (Cx ) H(—io3)C s
(82, 7HSYH) T = (Cq,) M (—io3)Ch

Ci = (CL)7'CE,

Cow = (Con) 'Co

0
Sil,n
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Whittaker Parametrices.

We momentarily ignore the jumps on the inner circles, extend
the rays towards the origin and seek a matrix satisfying the
described jumps and

An(x) < 1 ) ixAcs/2 \ (1—m—1)o3/2
I O (= | | ™ 3/2x AN :

(Bn(x) + O(X)) AZ=7, A — 0.

27 /32



Whittaker Parametrices.

We momentarily ignore the jumps on the inner circles, extend
the rays towards the origin and seek a matrix satisfying the
described jumps and

An(x) ( 1 > ixAcs/2 \ (1—m—1)03/2
I O =) | e /2x 5 A= 00,
o\, x) = ( T T\ ) e L @)

(Ba(x) + O(X)) AZ=7, A — 0.

It turns out that ¢SERA,X) satisfies

3¢$,OO) ix Qo 1 (c0)
T()\,X) = (303 + TB,,(X)O‘3B,,(X) ) & (A x)

which is equivalent to Whittaker’s differential equation.
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Riemann—-Hilbert Problem on a Circle.

Solving the inner and outer RHP yields a problem on a circle
for Qn(A\ x), where

Q,(\,x) > I as A — o0 and
Qn7+(>\,X) = Qn,—()\aX)VOn(AvX)
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Riemann—-Hilbert Problem on a Circle.

Solving the inner and outer RHP yields a problem on a circle
for Qn(A\ x), where

Q,(\,x) > I as A — oo and
Qn+ (A, x) = Qn—(A, x)Vq, (A x)

Proposition. For all n€N, the Riemann-Hilbert problem
for Qn(A,x) admits an explicit asymptotic expansion for
x — 0, which yields

n—m-—1 5y [ (—3 —m—n)
(m=—n+3)(m+n+3 F(—32—m+n)

un(0; m) =
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Riemann—-Hilbert Problem on a Circle.

Proposition. For all n€N, the Riemann-Hilbert problem

for Qn(A,x) admits an explicit asymptotic expansion for
x — 0, which yields

1 1
un(O;m): n_m_§ 2n|'(—§—m—n)

(m=n+3(m+n+3)" T(-3-m+n)

Contrast this with the Clarkson-Law-Lin formula

u (O m) — ¢”(m — 1/2)¢n71(m + 1/2)
o Sn(m+1/2)pp_1(m—1/2)

K K
G2k (1) = dok—1( H p = (2= 1), bora(p) = dar(p) - - TJ(0* = (24)?
j=1 Jj=1

28 / 32



Limiting Riemann-Hilbert Problem.

The jump matrix Vg, (A x) possesses a limit as n— oo with
x=2z/n.

The resulting Riemann-Hilbert problem for Q(\,x) can be
shown to have a solution which is meromorphic in x.
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In fact, elementary transformations take Q+— Q which solves

o2 o2

m()\,z) =N\ 2)Q(\,z) and E()\’Z) =2Z(\,2)Q(\ 2).
where
(0 iz 1 (V(z) W(2) 1 X(z) —2iX(2)2U(2)
A7) = (o 0) *ax < 2 —V(z)) Y (—i/(2U(z)) _X(2) )
and

(0 1 1 (V(z) W(=2) 1 X(z) —2iX(2)?U(z)
Z(Az) =X (0 o) e ( 2 —V(z)> 3 <—i/(2U(z)) ~X(2) ) '
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oQ o
m()\,z) =N\ 2)Q(\,z) and E()\,z) =2Z(\2)Q(\ 2).
where
(0 iz 1 (V(z) W(2) 1 X(z) —2iX(2)?U(z)
A7) = (o o) T < 2 —V(z)) T (—i/(2U(z)) ~X(2) )
and

(0 1 1 (V(z) W(=2) 1 X(z) —2iX(2)?U(z)
Z(Az) =X (o o) e ( 2 —V(z)> ) <—i/(2U(z)) ~X(2) ) '

Tracking down our transformations gives

lim  up(n~tz) = UVeR/0dd(2) = Y(z)
n—o0
n even/odd

30 / 32



Compatibility Condition.

The system of equations

g—gj()\,z) =N\, 2)Q(N\,z) and %()\,z) =2Z(\ 2)Q\, 2).
has compatibility condition
ON 0z
5.2 = S50 + [N 2), Z(8, 2)] = 0.

which implies
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