Multivariate Bounded Rational Functions

Kelly Bickel Bucknell University Lewisburg, PA

Midwestern Workshop on Asymptotic Analysis October 11, 2024

One Variable: $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$

• Let p be a polynomial with no zeros on \mathbb{D} , so

 $p(z) = c(z-b_1)\cdots(z-b_n) \quad$ for b_1,\ldots,b_n with $|b_j|\geq 1$ and setting $\alpha_j = 1/\bar b_j$ gives

 $p(z) = d(1-\bar\alpha_1 z)\cdots (1-\bar\alpha_n z) \quad \text{ for } \alpha_1,\ldots,\alpha_n \text{ with } |\alpha_j| \leq 1.$

\n- \n
$$
\tilde{p}(z) = z^n \overline{p(\frac{1}{\overline{z}})} = z^n \overline{d}(1 - \alpha_1 \frac{1}{z}) \cdots (1 - \alpha_n \frac{1}{z}) = \overline{d}(z - \alpha_1) \cdots (z - \alpha_n).
$$
\n
\n- \n If $z \in \mathbb{T} = \partial \mathbb{D}$, each $|z - \alpha_j| = |1 - \overline{\alpha} z|$ so $|p(z)| = |\tilde{p}(z)|$.\n
\n

Nice Rational Functions

Let ϕ be the following rational function with denominator p

$$
\phi(z) = \frac{\tilde{\rho}(z)}{\rho(z)} = \frac{\bar{d}}{d} \left(\frac{z - \alpha_1}{1 - \bar{\alpha}_1 z} \right) \cdots \left(\frac{z - \alpha_n}{1 - \bar{\alpha}_n z} \right).
$$

Then ϕ is holomorphic on $\mathbb D$ and $|\phi(z)| = 1$ a.e. on $\mathbb T$.

If
$$
\alpha \in \mathbb{T}
$$
, $(1 - \bar{\alpha}z) = (\bar{\alpha}\alpha - \bar{\alpha}z) = -\bar{\alpha}(z - \alpha)$.

A finite Blaschke product is a rational function of the form

$$
\phi(z)=\eta z^m\left(\frac{z-\alpha_1}{1-\bar{\alpha}_1z}\right)\cdots\left(\frac{z-\alpha_n}{1-\bar{\alpha}_nz}\right), \quad \text{for } \eta\in\mathbb{T}, \alpha_1,\ldots,\alpha_n\in\mathbb{D}.
$$

Phase Portrait for ϕ with zeros: $0, -\frac{1}{2} \pm \frac{i}{2}$ $\frac{i}{2}$, $\frac{2}{3}$ $\frac{2}{3}, \frac{5i}{6}$ $\frac{51}{6}$.

Finite Blaschke Product Applications

- L.U. Approximation: Every holomorphic $f : \mathbb{D} \to \overline{\mathbb{D}}$ can be locally uniformly approximated by finite Blaschke products.
- Nevanlinna-Pick Interpolation: Given nodes $z^1,\ldots,z^n\in\mathbb{D}$ and $w^1,\ldots,w^n\in\mathbb{C}$, does there exist a holomorphic $f:\mathbb{D}\to\overline{\mathbb{D}}$ with $f(z^j) = w^j$?

Every solvable NPI problem has finite Blaschke product solution.

Factoring functions on \mathbb{D} : if $f \in H^p(\mathbb{D})$ then

 $f = B$ laschke product · Singular Inner Function · Outer Function

Shift-invariant subspaces of the Hardy space $H^2(\mathbb{D})$.

 $(Sf)(z) = zf(z)$, then $\phi H^2(\mathbb{D})$ is closed and S-invariant.

Reference: Finite Blaschke Products and their Connections by Stephan Garcia, Javad Mashreghi, William Ross.

$\textbf{\textup{Multivariable:}}\;\;\mathbb{D}^d=\{z\in\mathbb{C}^d:\;\textup{each}\;|z_j|<1\}$

- Let ρ be nonzero on \mathbb{D}^d (stable) with multi-degree $m=(m_1,\ldots,m_d).$
- Define $\widetilde{\rho}(z_1,\ldots,z_d):=z_1^{m_1}\cdots z_d^{m_d} \rho(\frac{1}{\bar{z}_1}$ $\frac{1}{\bar{z}_1},\ldots,\frac{1}{\bar{z}_c}$ $\frac{1}{\bar{z}_d}$.

Ex.
$$
p(z) = 2 - z_1 - z_2 \Rightarrow \tilde{p}(z) = z_1 z_2 \left(2 - \frac{1}{z_1} - \frac{1}{z_2}\right) = 2z_1 z_2 - z_2 - z_1.
$$

Then
$$
\phi(z) = \frac{2z_1z_2 - z_1 - z_2}{2 - z_1 - z_2}
$$
 satisfies $|\phi(z)| = 1$ a.e. on \mathbb{T}^2 ,

Rational Inner Functions (Rudin, Stout 1965)

Every rational ϕ holomorphic on \mathbb{D}^d and with $|\phi(z)|=1$ a.e. on \mathbb{T}^d is of the form \sim (λ)

$$
\phi(z)=\eta z^n\frac{p(z)}{p(z)},
$$

where $\eta\in\mathbb{T},$ $z^n=z_1^{n_1}\cdots z_d^{n_d}$, ρ is a polynomial with no zeros on \mathbb{D}^d , and ρ and \tilde{p} have no common terms.

Rational Inner Functions on \mathbb{D}^d and \mathbb{D}^2

- **L.U. Approximation**: Every holomorphic $f: \mathbb{D}^d \to \overline{\mathbb{D}}$ can be locally uniformly approximated by RIFs. (Rudin 1969)
- Nevanlinna-Pick Interpolation: Given nodes $z^1,\ldots,z^n\in\mathbb{D}^2$ and $w^1,\ldots,w^n\in\mathbb{C}$, does there exist a holomorphic $f:\mathbb{D}^2\to\overline{\mathbb{D}}$ with $f(z^j) = w^j$?

Every solvable Nevanlinna-Pick Interpolation problem has a RI solution ϕ. (Agler 1989)

- RIFs & Stable Polynomials: Polynomials p with no zeros on \mathbb{D}^2 have applications to systems and control engineering and other fields. (Kummert 1989, Ball-Sadosky-Vinnikov 2005)
	- **Transfer function realizations**
	- Sums of squares decompositions
- Crucial Examples: Matrix monotone functions, Clark measures, Schur-Agler class functions

Ex. (Cont.) Consider
$$
\phi(z) = \frac{2z_1z_2 - z_1 - z_2}{2 - z_1 - z_2}
$$
. Note that $\phi(1, 1) = \frac{0}{0}$.

Note: Rational inner functions (RIFs) can have singularities on \mathbb{T}^d .

- Occur at common zeros of p and \tilde{p}
- When $d = 2$, there are finitely many of them. (depends on deg p)

Question: How do RIFs behave near their boundary singularities?

On \mathbb{T}^d ?

On non-tangential approach regions inside \mathbb{D}^d ?

We now restrict to $d = 2$.

"Factoring" stable polynomials when $d=2$

Let
$$
\phi = \frac{\tilde{p}}{p}
$$
 be a RIF with $p(1,1) = 0$ and let $\mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}.$

Use the conformal map $\beta : \mathbb{H} \to \mathbb{D}$ with $\beta(z) = \frac{1+zi}{1-zi}$ to convert p stable on \mathbb{D}^2 with $\rho(1,1)=0$ to P stable on \mathbb{H}^2 with $P(0,0)=0$ via

$$
P(z_1, z_2) = c(1 - z_1 i)^{m_1} (1 - z_2 i)^{m_2} p(\beta(z_1), \beta(z_2))
$$

$$
\Phi(z_1, z_2) = \phi(\beta(z_1), \beta(z_2)) = \frac{\overline{P}(z_1, z_2)}{P(z_1, z_2)}.
$$

Ex. Let $p(z_1, z_2) = 2 - z_1 - z_2$. Then

$$
P(z_1, z_2) = c(1 - z_1 i)(1 - z_2 i) p(\beta(z_1), \beta(z_2)) = z_1 + z_2 - 2iz_1 z_2
$$

= $(1 - 2iz_1) \left(z_2 + \frac{z_1}{1 - 2iz_1}\right)$
= $(1 - 2iz_1) (z_2 + z_1 + 2iz_1^2 - 4z_1^3 + O(z_1^4))$.

So near $(0,0)$, \mathcal{Z}_P is parameterized by $z_2 = -\left(z_1 + 2iz_1^2 - 4z_1^3 + O(z_1^4)\right)$.

Recall
$$
P(z_1, z_2) = (1 - 2iz_1)(z_2 + z_1 + 2iz_1^2 - 4z_1^3 + O(z_1^4))
$$
.

Puiseux Factorization (Knese 2015)

Let P be as above with $P(0, 0) = 0$. Then

$$
P(z) = u(z) \prod_{j=1}^k \prod_{m=1}^{M_j} \left(z_2 + q_j(z_1) + z_1^{2L_j} \psi_j^m \left(z_1^{1/M_j} \right) \right),
$$

where each L_j is a positive integer, $q_j \in \mathbb{R}[z]$ with $q_j(0) = 0$, deg $q_j < 2 L_j$, and ψ_j^m is holomorphic near 0 with $\text{Im}(\psi_j(0)) > 0$.

Ex (cont):
$$
u(z) = 1 - 2iz_1
$$
, $k = 1$, $M_1 = 1$, $q_1(z_1) = z_1$, $L_1 = 1$, $\psi_1(z_1) = 2i - 4z_1 + O(z_1^2)$,

Consider the polynomial p with no zeros on \mathbb{D}^2 and $p(1,1)=0$ given by

$$
p(z_1,z_2)=4-5z_1-2z_2+2z_1z_2+3z_1^2-z_1^2z_2-z_1^3z_2
$$

Convert it to the polynomial with no zeros on \mathbb{H}^2 given by

$$
P(z_1, z_2) = z_1 + z_2 - 2z_1^3 - 6z_1^2z_2 - i(z_1^2 + z_1z_2 - 4z_1^3z_2).
$$

Then $P(0,0) = 0$ and

$$
P(z_1, z_2) = \underbrace{(1 - iz_1 - 6z_1^2 + 4iz_1^3)}_{=:u(z)} \left(z_2 + z_1 \frac{1 - iz_1 - 2z_1^2}{1 - iz_1 - 6z_1^2 + 4iz_1^3}\right)
$$

=
$$
u(z)(z_2 + z_1 + 4z_1^3 + 24z_1^5 + 8iz_1^6 + O(z_1^7)).
$$

For $x_1 \in \mathbb{R}$ and near 0, we have: $\{|\text{Im}(z_2)| : P(x_1, z_2) = 0\} \approx |x_1|^6$.

Key information from the Factorization

Contact Order

 $K := \max\{2L_1, \cdots, 2L_k\}$ is the **contact order** of P at $(0, 0)$, which measures how the zero set of P approaches \mathbb{R}^2 (along its quickest branch).

Universal Contact Order

 $K_u := \min\{2L_1, \cdots, 2L_k\}$ is the universal contact order of P at $(0, 0)$, which measures how the zero set of P approaches \mathbb{R}^2 (along its slowest branch).

Polynomial Truncation of P

$$
[P](z) = \prod_{j=1}^k (z_2 + q_j(z_1) + iz_1^{2L_j})^{M_j},
$$

is the polynomial truncation of p , which extracts all "important" information about the zero set of P near $(0, 0)$.

- Question: How do RIFs ϕ or Φ behave near their boundary singularities?
	- On \mathbb{T}^2 or \mathbb{R}^2 ?
	- On non-tangential approach regions inside \mathbb{D}^2 or $\mathbb{H}^2?$

Contact Order

Figure 1. For two ϕ s and some $\lambda \in \mathbb{T}$, the graphs of the level sets $\phi = \lambda$ on \mathbb{T}^2 represented as $[-\pi, \pi] \times [-\pi, \pi]$.

Theorem (B.-Pascoe-Sola 2020)

Then
$$
\frac{\partial \phi}{\partial z_1}
$$
, $\frac{\partial \phi}{\partial z_2} \in L^{\mathfrak{p}}_{\text{loc}}(\mathbb{T}^2)$ if and only if $\mathfrak{p} < \frac{1}{K} + 1$.

• If
$$
\phi(z) = \frac{2z_1z_2-z_1-z_2}{2-z_1-z_2}
$$
, then K at $(1,1)$ is 2 and $\frac{\partial \phi}{\partial z_j} \in L^p(\mathbb{T}^2)$ iff $\mathfrak{p} < \frac{3}{2}$.

Universal Contact Order

Universal Contact Order

 $K_u := \min\{2L_1, \cdots, 2L_k\}$ is the universal contact order of P at (0,0).

For $z \in \mathbb{H}^2$, let $D_z = \{|z_1|, |z_2|, \text{Im}(z_1), \text{Im}(z_2)\}\$ For $c\geq 1$, the associated non-tangential approach region to 0 in \mathbb{H}^2 is:

$$
AR_c = \left\{ z \in \mathbb{H}^2 : c \geq x/y \geq 1/c \text{ for any } x, y \in D_z \right\}
$$

Theorem (B.-Knese-Pascoe-Sola, 2021)

 $\Phi(z)=\frac{\bar{P}(z)}{P(z)}$ has a non-tangential polynomial approximation to order $K_u-2.$ Specifically, there is a polynomial Q of degree at most $K_u - 2$ so that

$$
\Phi(z) = Q(z) + O\left(|z_1|^{K_u-1}\right)
$$

on any non-tangential region AR_c as $|z_1| \rightarrow 0$.

Example (Cont.)

Consider $P(z_1, z_2) = z_1 + z_2 - 2z_1^3 - 6z_1^2z_2 - i(z_1^2 + z_1z_2 - 4z_1^3z_2).$ Recall that: $P(z_1, z_2) = u(z)(z_2 + z_1 + 4z_1^3 + 24z_1^5 + 8iz_1^6 + O(z_1^7)).$

Then $K_u = 6$ and $K_u - 2 = 4$. so Φ has a non-tangential polynomial approximation to order 4 near 0.

One can show that on non-tangential approach regions to 0,

$$
\Phi(z_1, z_2) = 1 + 2iz_1 - 2z_1^2 + 2iz_1^3 - 6z_1^4 - \frac{2iz_1^5(z_1 - 7z_2)}{z_1 + z_2} + O(|z_1|^6)
$$

Question: What are the bounded rational functions on \mathbb{D}^d or \mathbb{H}^d ?

Note: If p is the denominator of a finite Blaschke product, then p has no zeros on $\overline{\mathbb{D}}$.

Thus, q/p is bounded on \overline{D} for all polynomials q.

Let p be the denominator of a rational inner function on \mathbb{H}^2 .

Question: If $p(0,0) = 0$, what are the functions q so that $\frac{q}{p}$ is bounded and holomorphic in \mathbb{H}^2 intersected with a neighborhood of 0?

Def. We call these $\frac{q}{p}$ locally H^{∞} .

Note: Let $R_0 = \mathbb{C}\{x, y\}$, the set of convergent power series centered at 0.

Any polynomial $q \in (p, \bar{p})R_0$ gives $\frac{q}{p}$ bounded in \mathbb{H}^2 .

Theorem (B.-Knese-Pascoe-Sola 2021

Let ρ be a stable polynomial on \mathbb{H}^2 such that ρ vanishes to order 1 at $(0,0).$ Then if $q \in \mathbb{C}[z_1, z_2]$, then q/p is locally H^{∞} if and only if $q \in (p, \bar{p})R_0$.

Ex. Consider the polynomial with no zeros on \mathbb{H}^2 given by

$$
p(z_1, z_2) = z_1 + z_2 - 2z_1^3 - 6z_1^2 z_2 - i(z_1^2 + z_1 z_2 - 4z_1^3 z_2)
$$

= $u(z)(z_2 + z_1 + 4z_1^3 + 24z_1^5 + 8iz_1^6 + O(z_1^7)).$

Then p clearly vanishes to order 1 at 0 and so for a polynomial q, $\frac{q}{p}$ $\frac{q}{p}$ is locally H^{∞} if and only if

$$
q\in (p,\bar{p})R_0=(z_2+z_1+4z_1^3+24z_1^5, z_1^6)R_0
$$

Admissible Numerators: Additional cases

Recall that
$$
[p](z) = \prod_{j=1}^{k} (z_2 + q_j(z_1) + iz_1^{2l_j})^{M_j}
$$
.
Define product ideal $\mathcal{I} = \prod_{j=1}^{k} (z_2 + q_j(z_1), z_1^{2l_j})^{M_j} R_0$.

Theorem (B.-Knese-Pascoe-Sola 2021)

Let p be a stable polynomial on \mathbb{H}^2 with $p(0, 0) = 0$ and $q \in \mathbb{C}[z_1, z_2]$.

- If $f \in \mathcal{I}$, then q/p is locally H^{∞} .
- Suppose p either has a double point, an ordinary multiple point, or repeated segments (all q_i are the same). If q/p is locally H^∞ then $q \in \mathcal{I}$.

Full Numerator Criterion (Conjecture)

For $q \in \mathbb{C}[z_1, z_2]$, q/p is locally H^{∞} if and only if $q \in \mathcal{I}$.

Ex. Consider the polynomial

$$
p(z_1, z_2) = -4(z_2^2 + 4z_1z_2 + z_1^2 - 2z_1^2z_2^2 - 4iz_1z_2(z_1 + z_2))
$$

=
$$
-4(1 - 4iz_1 - 2z_1^2) \left(z_2^2 + \frac{4z_1(1 - iz_1)}{1 - 4iz_1 - 2z_1^2}z_2 + \frac{z_1^2}{1 - 4iz_1 - 2z_1^2}\right).
$$

Near $(0, 0)$ we can factor p/u as:

$$
\begin{aligned}\n&\left(z_2+z_1\frac{(2(1-iz_1)+\sqrt{3-4iz_1-2z_1^2})}{1-4iz_1-2z_1^2}\right)\left(z_2+z_1\frac{(2(1-iz_1)-\sqrt{3-4iz_1-2z_1^2})}{1-4iz_1-2z_1^2}\right) \\
&=(z_2+(2+\sqrt{3})z_1+i\left(6+\frac{10}{\sqrt{3}}\right)z_1^2+\cdots\left)(z_2+(2-\sqrt{3})z_1+i\left(6-\frac{10}{\sqrt{3}}\right)z_1^2+\cdots\right) \\
&=(z_2+q_1(z_1)+icz_1^2+\cdots)(z_2+q_2(z_1)+idz_1^2+\cdots)\n\end{aligned}
$$

Then $\mathcal{I} = (z_2 + q_1(z_1), z_1^2)(z_2 + q_2(z_1), z_1^2)R_0$, with generators: $(z_2 + (2+\sqrt{3})z_1)(z_2 + (2-\sqrt{3})z_2)$ √ $\overline{3})z_1$), $z_1^2(z_2 + (2 -$ √ $\overline{(3)}z_1$), $z_1^2(z_2 + (2 + \sqrt{3})z_1)$, z_1^4

Full Numerator Criterion (Kollár 2024, Knese 2024)

For $q \in \mathbb{C}[z_1, z_2]$, q/p is locally H^{∞} if and only if $q \in \mathcal{I}$.

Question: What about polynomials p stable in \mathbb{D}^d or \mathbb{H}^d ?

Admissible Numerators in Product Domains

First Case: Assume p is stable on \mathbb{H}^{d+1} with variables (x_1, \ldots, x_d, z) , $p(0) = 0$, the zero 0 of p is isolated with respect to \mathbb{R}^{d+1} , and $\frac{\partial p}{\partial z}(0) \neq 0$, so p factors as

$$
p(x, z) = u(x, z) (z + \phi(x))
$$

for u, ϕ holomorphic near 0 with $u(0,0) \neq 0$ and $\phi(0) = 0$.

Lemma (B.-Knese-Pascoe-Sola 2024)

The function ϕ above must have the form

$$
\phi(x)=\phi_1(x)+\cdots+\phi_{2L-1}(x)+\phi_{2L}(x)+\cdots
$$

where each ϕ_j is a homogeneous polynomial of degree j , $\phi_1, \ldots, \phi_{2L-1} \in \mathbb{R}[x_1, \ldots, x_d]$ have real coefficients, and $\text{Im}(\phi_{2L}) \not\equiv 0$ and is non-negative on \mathbb{R}^d .

Admissible Numerators

Ex. Let p be stable on \mathbb{H}^3 given by

$$
p(x_1, x_2, z) = x_1 + x_2 + z - 2i(x_1x_2 + x_1z + x_2z) - 3x_1x_2z
$$

= $(1 - 2i(x_1 + x_2) - 3x_1x_2)\left(z + \frac{x_1 + x_2 - 2ix_1x_2}{1 - 2i(x_1 + x_2) - 3x_1x_2}\right)$

where $\phi(x_1, x_2) = x_1 + x_2 + 2i(x_1^2 + x_1x_2 + x_2^2) + \text{ higher order terms.}$

Theorem (B.-Knese-Pascoe-Sola 2024)

Let Im (ϕ_{2L}) be positive definite. For $q \in \mathbb{C}[x, z]$, q/p is locally H^{∞} near 0 if and only if

$$
q\in\mathcal{I}=(z+r(x),(x)^{2L})R_0
$$

where $r(x)=\sum_{j<2L}\phi_j(x)$ and $(x)^{2L}$ is the set of powers x^α for $|\alpha|=2L.$

Ex. (Cont.)
$$
\mathcal{I} = (x_1 + x_2 + z, x_1^2, x_1x_2, x_2^2)R_0
$$

Question Are there p with Im(ϕ_{2L}) positive semi-definite but not positive-definite on \mathbb{R}^d ?

The Semidefinite Case

Ex. Start with p_0 with no zeros on \mathbb{D}^2 with $p(1,1) = 0$ given by

$$
p_0(x, y) = x^2 - xy - 3x - y + 4.
$$

Then, consider $p_1(x, y, z) = p_0((x + y)/2, z)$ Converting this to a stable polynomial on \mathbb{H}^3 gives

$$
p(x, y, z) = 2x^2y^2z + 2ix^2y^2 + 3ix^2yz + 3ixy^2z - \frac{5}{2}x^2y
$$

- $\frac{5}{2}xy^2 - \frac{5}{4}x^2z - \frac{9}{2}xyz - \frac{5}{4}y^2z - \frac{3}{4}ix^2$
- $\frac{5}{2}ixy - \frac{3}{4}iy^2 - 2ixz - 2iyz + \frac{1}{2}x + \frac{1}{2}y + z.$

And, $\phi(x, y) = \frac{1}{2}(x + y) + \frac{i}{4}(x - y)^2 +$ higher order terms.

Letting $H(x, y) = \frac{1}{2}(x + y) + \frac{1}{8}(x^3 + 7x^2y + 7xy^2 + y^3)$, we can find that for $q \in \mathbb{C}[x, z]$, q/p is locally \hat{H}^{∞} if and only if

$$
q \in \mathcal{I} = (z + H(x, y), (x - y)^2, (x - y)(x + y)^2, (x, y)^4).
$$

Takeaways

- RIFs and bounded rational functions are straightforward on D.
- RIFs on \mathbb{D}^2 and \mathbb{H}^2 have well-understood boundary regularity properties.
- (Locally) Bounded rational functions on \mathbb{D}^2 and \mathbb{H}^2 have characterizations.
- In higher dimensions, there are many open questions about the structure and properties of rational inner functions and more generally, bounded rational functions.

Many thanks to the organizers of MWAA!!