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An example Riemann-Hilbert problem

S
−

+

Given a smooth, oriented curve S in the complex plane and a Hölder continuous function
ϕ(z) on S, find a function Ψ(z), analytic on C \ S, which satisfies

Ψ+(z)−Ψ−(z) = ϕ(z), z ∈ S.

A solution is given by the Sokhotski-Plemelj formula:

Ψ(z) =
1

2πi

∫
S

ϕ(w)

w − z
dw.
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What is the Bessel kernel determinant?

Let K|I be the trace class operator with the kernel

K(x, y) =
Jα(

√
x)

√
yJ ′

α(
√
y)−

√
xJ ′

α(
√
x)Jα(

√
y)

2(x− y)

acting on L2(I), where Jα is the Bessel function of the first kind with order α > −1, and
I ⊆ R. The object of study is the Fredholm determinant

F (I) = det(I −K|I),

which represents a gap probability for the Bessel point process. Let

Ig := (0, x1) ∪ (x2, x3) ∪ · · · ∪ (x2g , x2g+1).

We study the gap probability F (rIg) in the limit r → +∞, i.e. we wish to obtain the large
gap asymptotics.
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Results for g = 0

Theorem (Tracy, Widom ’94)

Let I0 = (0, x1) and α > −1. As r → +∞,

F (rI0) = exp

(
−
rx1

4
+ α

√
rx1 −

α2

4
log r + C0 +O(r−

1
2 )

)
,

where α and C0 are independent of r.

Theorem (Ehrhardt α ∈ (−1, 1), ’10, Deift, Krasovsky, Vasilevska α > −1, ’11)

The constant C0 is given by

C0 = G(1 + α)(2π)−
α
2 −

α2

4
log x1,

where G denote the Barnes’ G-function.
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Differential Identity

K|I1
is an operator with an integrable kernel (in the sense of Its et al.)! This means its

resolvent kernel can be expressed in terms of the solution of a RHP.

Theorem (B., Charlier, Lenells ’23)

Let 0 < x1 < x2 < x3 < +∞ be fixed. We have the identity

∂r logF (rI1) = 1
2ir

Φ1,12(r) +
1

16r
,

where Φ1(r) = Φ1(r; x⃗) is defined by

Φ1(r) = lim
z→∞

rz
(
Φ(z)e−

√
rzσ3M−1(rz)

σ3
4 − I

)
, M =

1
√
2

(
1 i
i 1

)
, σ3 =

(
1 0
0 −1

)
,

and Φ(·) = Φ(·; r, x⃗) is the unique solution of the following RH problem.
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RHP for Φ

−x3 −x2 −x1

(
1 0
1 1

)
(

0 1
−1 0

)

(
1 0
1 1

)

(
1 1
0 1

)

RH problem for Φ(·) = Φ(·; r, x⃗)
(a) Φ : C \ ΣΦ → C2×2 is analytic, where the contour ΣΦ is shown in the next slide.

(b) We have the jump conditions

Φ+(z) = Φ−(z)JΦ(z), z ∈ ΣΦ.

(c) As z → ∞, we have

Φ(z) =
(
I +O(z−1)

)
(rz)−

σ3
4 Me

√
rzσ3 ,

where the principal branch is chosen for each fractional power.

(d) As z → −xj , j = 1, 2, 3, we have Φ(z) = O(log(z + xj)).
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Normalize Φ at z = ∞

To normalize Φ(z) at z = ∞, we introduce a g-function, so it should have the behavior

g(z) =
√
z(1 +O(z−1)), z → ∞.

The idea is to define a new function

T̃ (z) = Φ(z)e−
√

rg(z)σ3 .

We see that g(z) has a branch cut at z = ∞. Let’s try to choose the jumps of g(z) to our
advantage. Now we can compute the jumps of T̃ (z); for example, when z ∈ (−∞,−x3),

T̃+(z) = Φ+(z)e−
√
rg+(z)σ3

= Φ−(z)e−
√
rg−(z)σ3e

√
rg−(z)σ3

(
0 1
−1 0

)
e−

√
rg+(z)σ3

= T̃−(z)

(
0 e

√
r(g+(z)−g−(z))σ3

e−
√
r(g+(z)−g−(z))σ3 0

)
.
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Choosing the jumps of g(z)

Assuming g(z) has jumps only on (−∞,−x1), we find that T̃ (z) has the jumps

T̃+(z) = T̃−(z)



(
0 e

√
r(g+(z)+g−(z))

e−
√

r(g+(z)+g−(z)) 0

)
, z ∈ (−∞,−x3),

e−
√

r(g+(z)−g−(z))σ3 , z ∈ (−x3,−x2),(
e−

√
r(g+(z)−g−(z)) e

√
r(g+(z)+g−(z))

0 e
√

r(g+(z)−g−(z))

)
, z ∈ (−x2,−x1).

Thus, let’s determine g(z) by the conditions

1 g(z) is analytic for z ∈ C \ (−∞,−x1),

2 g(z) =
√
z(1 +O(z−1)) as z → ∞,

3 g(z) has the jump conditions

g+(z) + g−(z) = 0, z ∈ (−∞,−x3) ∪ (−x2,−x1),

g+(z)− g−(z) = iΩ, z ∈ (−x3,−x2),

where Ω is a constant.
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Determining g(z)!

Let’s use the Sokhotski–Plemelj formula to determine g(z)! Differentiating the jump
conditions for g(z), we have

g′+(z) + g′−(z) = 0, z ∈ (−∞,−x3) ∪ (−x2,−x1),

g′+(z)− g′−(z) = 0, z ∈ (−x3,−x2).

Define
√

R(z) :=
√

(z + x1)(z + x2)(z + x3) with R(z) > 0 for z > −x1 and jumps√
R(z)+ +

√
R(z)− = 0, z ∈ (−∞,−x3) ∪ (−x2,−x1).

Now notice that (
g′(z)

√
R(z)

)
+

−
(
g′(z)

√
R(z)

)
−

= 0, z ∈ (−∞,−x1).

For g(z) to have the correct behavior at z = ∞, we must have

g′(z) =
q1z + q0√

R(z)
.
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g(z) function

g(z) =

∫ z

−x1

s
2
+ q0√
R(s)

ds, where q0 is defined by

∫ −x2

−x3

s
2
+ q0√
R(s)

ds = 0.

The g-function has the following properties:

1 The g-function is analytic in C \ (−∞,−x1] and satisfies g(z) = g(z).

2 The g-function satisfies the jump conditions

g+(z) + g−(z) = 0, z ∈ (−∞,−x3) ∪ (−x2,−x1),

g+(z)− g−(z) = iΩ, z ∈ (−x3,−x2),

where Ω = 2
∫−x1
−x2

s
2
+q0

|R(s)|
1
2

ds > 0.

3 As z → ∞, z /∈ (−∞,−x3), we have

g(z) =
√
z −

2c
√
z
+O(z−3/2), c := q0 −

x1 + x2 + x3

4
.

4 Re g(z) ≥ 0 for z ∈ C with equality only when z ∈ (−∞,−x3] ∪ [−x2,−x1].

Normalize Φ(z) at z = ∞ by defining T (z) :=

(
1 0

−2ic
√
r 1

)
r

σ3
4 Φ(z)e−

√
rg(z)σ3 .
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RHP for T

−x3 −x2 −x1

(
1 0

e−2
√

rg(z) 1

)
(

0 1
−1 0

)

(
1 0

e−2
√

rg(z) 1

)
e−iΩ

√
rσ3

(
e−2

√
rg+(z) 1

0 e−2
√
rg−(z)

)

RH problem for T (·) = T (·; r, x⃗)
(a) T : C\ΣT → C2×2 is analytic.

(b) The jumps for T are given by

T+(z) = T−(z)JT (z), z ∈ ΣT .

(c) As z → ∞, we have

T (z) =

(
I +

T1

z
+O

(
z−2

))
z−

σ3
4 M.

(d) T (z) = O(log(z + xj)) as z → −xj , j = 1, 2, 3.
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Opening lenses

Notice that(
e−2

√
rg+(z) 1

0 e−2
√

rg−(z)

)
=

(
1 0

e−2
√
rg−(z) 1

)(
0 1
−1 0

)(
1 0

e−2
√
rg+(z) 1

)
.

We now open the ‘lenses’ by defining the new matrix

S(z) := T (z)



(
1 0

−e−2
√
rg(z) 1

)
, z ∈ L and Im z > 0,(

1 0

e−2
√

rg(z) 1

)
, z ∈ L and Im z < 0,

I, otherwise.
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RHP for S

−x3 −x2 −x1

(
1 0

e−2
√
rg(z) 1

)
(

0 1
−1 0

)

(
1 0

e−2
√
rg(z) 1

)
e−iΩ

√
rσ3

(
1 0

−e−2
√
rg(z) 1

)
(

0 1
−1 0

)

(
1 0

e−2
√
rg(z) 1

)

RH problem for S(·) = S(·; r, x⃗)
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(c) As z → ∞, we have

S(z) =

(
I +

T1

z
+O

(
z−2

))
z−

σ3
4 M.

(d) S(z) = O(log(z + xj)) as z → −xj , j = 1, 2, 3.
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Global parametrix P (∞)

−x3 −x2 −x1

(
0 1
−1 0

)
e−iΩ

√
rσ3

(
0 1
−1 0

)

RH problem for P (∞)

(a) P (∞) : C\(−∞,−x1] → C2×2 is analytic.

(b) The jumps for P (∞) are given by

P
(∞)
+ (z) = P

(∞)
− (z)

(
0 1
−1 0

)
, z ∈ (−∞,−x3) ∪ (−x2,−x1),

P
(∞)
+ (z) = P

(∞)
− (z)e−iΩ

√
rσ3 , z ∈ (−x3,−x2),

(c) As z → ∞, we have

P (∞)(z) =

(
I +

P
(∞)
1

z
+O

(
z−2

))
z−

σ3
4 M. (1) eq:Pinf asympinf

(d) As z → −xj , j = 1, 2, 3, we have P (∞)(z) = O((z + xj)
− 1

4 ).

This RHP is explicitly solvable in terms of Jacobi θ-functions!
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Local Parametrices P (−xj)

Let Dj be a small neighborhood of −xj , j = 1, 2, 3. We approximate S(z) with a local

parametrix P (−xj)(z) so that:

1 P (−xj)(z) has the (exact) same jumps as S(z) for z ∈ Dj .

2 S(z)P (−xj)(z)−1 = O(1) as z → −xj .

3 P (−xj) “matches” with P (∞), in the sense that

P (−xj)(z) = (I + o(1))P (∞)(z) as r → +∞,

uniformly for z ∈ ∂Dj .

The local parametrices P (−xj)(z) can be explicitly constructed in terms of Bessel functions!
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Small norm problem

−x3 −x2 −x1

Define the error matrix

R(z) :=

{
S(z)P (−xj)(z)−1, z ∈ Dj , j = 1, 2, 3,

S(z)P (∞)(z)−1, z ∈ C \
⋃3

j=1 Dj .

The jumps of R(z) on ΣR is denoted JR(z) and has the properties

JR(z) =


I +O(e−c̃|rz|

1
2 ) as r → +∞ uniformly for z ∈ ΣR \

(
∪3
j=1∂Dj

)
,

I +
J
(1)
R

(z)
√

r
+O(r−1) as r → +∞ uniformly for z ∈ ∪3

j=1∂Dj .

It follows from the small-norm theory of RHPs that

R(z) = I +
R(1)(z)

√
r

+O(r−1) as r → +∞ uniformly for z ∈ C \ ΣR.
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Putting the pieces together

We can now unravel our transformations to get the expression

Φ(z) = r−
σ3
4

(
1 0

2ic
√
r 1

)
R(z)P (∞)(z)e

√
rg(z)σ3 .

Now we can compute the residue and obtain

Φ1,12(r)

2ir
= c+

P
(∞)
1,12

2i
√
r

+
R

( 1
2
)

1,12

2ir
+O(r−

3
2 ) as r → +∞,

where R
( 1
2
)

1,12 is obtained from R(1)(z).

Lemma

As r → +∞,

Φ1,12(r)

2ir
=

d

dr

cr + log θ(−Ω
√

t
2π

)−
1

32

3∑
j=1

∫ r

M
B(−xj ,−Ω

√
t

2π
)
dt

t

+O(r−
3
2 ),

where M > 0 is independent of r and B is a ratio of θ-functions.
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Result for g = 1, α = 0

The integrals of B can be computed using properties of θ-functions. We find that∫ r

M
B(−xj ,−Ω

√
t

2π
)
dt

t
= 2 log(r) + C̃j +O(r−1).

Thus, we reach our result:

Theorem

Let g = 1, α = 0 and fix 0 < x1 < x2 < x3 < +∞. As r → +∞,

F (rI1) = exp

(
c r −

1

8
log r + log θ

(
−Ω

√
r

2π

)
+ C +O(r−

1
2 )

)
,

where C is independent of r.
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Result for g ≥ 0, α > −1

Theorem (B., Charlier, Lenells ’23)
cor: ergo+dio

Let 0 < x1 < x2 < · · · < x2g+1 < ∞ and α > −1 be fixed. Then, for almost all choices of
x1, x2, . . . , x2g+1, as r → +∞,

F (rIg) = exp

(
c r − d1(α)

√
r −

g + 2α2

8
log r + logΘ(ν⃗(r)) + C +O(r−

1
2 )

)
,

where C is independent of r and Θ(·) is the Riemann Θ-function. For g = 0, we understand
that Θ(·) ≡ 1.

The integral term in the g > 1 case is significantly more challenging. One must understand
the winding of a g-dimensional torus. A novelty was the use of Birkoff’s ergodic theorem.
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