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Energy of spherical codes (1)

Let Sn−1 denote the unit sphere in Rn.

A �nite nonempty set C ⊂ Sn−1 is called a spherical code.

De�nition

For a given (extended real-valued) function h(t) : [−1, 1]→ [0,+∞], we
de�ne the h-energy (or potential energy) of a spherical code C by

E (n,C ; h) :=
1

|C |
∑

x ,y∈C ,x 6=y

h(〈x , y〉),

where 〈x , y〉 denotes the inner product of x and y .

The potential function h is called k-absolutely monotone on [−1, 1) if
its derivatives h(i)(t), i = 0, 1, . . . , k , are nonnegative for all 0 ≤ i ≤ k
and every t ∈ [−1, 1).
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Energy of spherical codes (2)

Problem

Minimize the potential energy provided the cardinality |C | of C is �xed;

that is, to determine

E(n,M; h) := inf{E (n,C ; h) : |C | = M}

the minimum possible h-energy of a spherical code of cardinality M.
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Energy of spherical codes (3)

Some interesting potentials:

Riesz α-potential: h(t) = (2− 2t)−α/2 = |x − y |−α, α > 0;

Newton potential: h(t) = (2− 2t)−(n−2)/2 = |x − y |−(n−2);

Log potential: h(t) = −(1/2) log(2− 2t) = − log |x − y |;

Gaussian potential: h(t) = exp(2t − 2) = exp(−|x − y |2);

Korevaar potential: h(t) = (1+ r2 − 2rt)−(n−2)/2, 0 < r < 1.
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Universal lower bound (ULB)

Theorem

Let n, M ∈ (D(n, τ),D(n, τ + 1)] and h be �xed. Then

E(n,M; h) ≥ M
k−1∑
i=0

ρih(αi ), E(n,M; h) ≥ M
k∑

i=0

γih(βi ).

These bounds can not be improved by using �good� polynomials of degree

at most τ .

Note the universality feature � ρi , αi (resp. γi , βi ) do not depend on the

potential function h.
Next � to explain the above parameters and their connections and to

investigate the bound in certain asymptotic process.
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Gegenbauer polynomials

For �xed dimension n, the (normalized) Gegenbauer polynomials are

de�ned by P
(n)
0

(t) := 1, P
(n)
1

(t) := t and the three-term recurrence

relation

(i + n − 2)P
(n)
i+1

(t) := (2i + n − 2) t P
(n)
i (t)− i P

(n)
i−1(t) for i ≥ 1.

Note that {P(n)
i (t)} are orthogonal in [−1, 1] with a weight

(1− t2)(n−3)/2 and satisfy P
(n)
i (1) = 1 for all i and n.

We have P
(n)
i (t) = P

((n−3)/2,(n−3)/2)
i (t)/P

((n−3)/2,(n−3)/2)
i (1), where

P
(α,β)
i (t) are the Jacobi polynomials in standard notation.
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Adjacent polynomials

The (normalized) Jacobi polynomials

P
(a+ n−3

2
,b+ n−3

2
)

i (t), a, b ∈ {0, 1},

P
(a+ n−3

2
,b+ n−3

2
)

i (1) = 1 and are called adjacent polynomials

(Levenshtein). Short notation P
(a,b)
i (t).

a = b = 0 → Gegenbauer polynomials.

P
(a,b)
i (t) are orthogonal in [−1, 1] with weight

(1− t)a(1+ t)b(1− t2)(n−3)/2. Many important properties follow, in

particular interlacing of zeros.
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Spherical designs (P. Delsarte, J.-M. Goethals, J. J. Seidel,
1977)

De�nition

A spherical τ -design C ⊂ Sn−1 is a spherical code of Sn−1 such that

1

µ(Sn−1)

∫
Sn−1

f (x)dµ(x) =
1

|C |
∑
x∈C

f (x)

(µ(x) is the Lebesgue measure) holds for all polynomials

f (x) = f (x1, x2, . . . , xn) of degree at most τ .

The strength of C is the maximal number τ = τ(C ) such that C is a

spherical τ -design.
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Delsarte-Goethals-Seidel bounds

For �xed strength τ and dimension n denote by

B(n, τ) = min{|C | : ∃ τ -design C ⊂ Sn−1}

the minimum possible cardinality of spherical τ -designs C ⊂ Sn−1.
Then Delsarte-Goethals-Seidel bound is

B(n, τ) ≥ D(n, τ) =

 2
(n+k−2

n−1
)
, if τ = 2k − 1,(n+k−1

n−1
)
+
(n+k−2

n−1
)
, if τ = 2k .
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Levenshtein bounds for spherical codes (1)

For every positive integer m we consider the intervals

Im =


[
t1,1k−1, t

1,0
k

]
, if m = 2k − 1,[

t1,0k , t1,1k

]
, if m = 2k .

Here t1,1
0

= −1, ta,bi , a, b ∈ {0, 1}, i ≥ 1, is the greatest zero of the

adjacent polynomial P
(a,b)
i (t).

The intervals Im de�ne partition of I = [−1, 1) to countably many

non-overlapping closed subintervals.
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Levenshtein bounds for spherical codes (2)

For every s ∈ Im, Levenshtein used certain polynomial f
(n,s)
m (t) of

degree m which satisfy all conditions of the linear programming

bounds for spherical codes. This yields the bound

A(n, s) ≤



L2k−1(n, s) =
(k+n−3

k−1
)[

2k+n−3
n−1 − P

(n)
k−1(s)−P

(n)
k (s)

(1−s)P(n)
k (s)

]
for s ∈ I2k−1,

L2k(n, s) =
(k+n−2

k

)[
2k+n−1
n−1 − (1+s)(P

(n)
k (s)−P(n)

k+1(s))

(1−s)(P(n)
k (s)+P

(n)
k+1(s))

]
for s ∈ I2k .

For every �xed dimension n each bound Lm(n, s) is smooth and

strictly increasing with respect to s. The function

L(n, s) =

{
L2k−1(n, s), if s ∈ I2k−1,
L2k(n, s), if s ∈ I2k ,

is continuous in s.
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Connections between DGS- and L-bounds (1)

The connection between the Delsarte-Goethals-Seidel bound and the

Levenshtein bounds are given by the equalities

L2k−2(n, t
1,1
k−1) = L2k−1(n, t

1,1
k−1) = D(n, 2k − 1),

L2k−1(n, t
1,0
k ) = L2k(n, t

1,0
k ) = D(n, 2k)

at the ends of the intervals Im.
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Connections between DGS- and L-bounds (2)

For every �xed (cardinality) M > D(n, 2k − 1) there exist uniquely

determined real numbers −1 < α0 < α1 < · · · < αk−1 < 1 and

positive ρ0, ρ1, . . . , ρk−1, such that the equality (quadrature formula)

f0 =
f (1)

M
+

k−1∑
i=0

ρi f (αi )

holds for every real polynomial f (t) of degree at most 2k − 1.

The numbers αi , i = 0, 1, . . . , k − 1, are the roots of the equation

Pk(t)Pk−1(s)− Pk(s)Pk−1(t) = 0,

where s = αk−1, Pi (t) = P
(1,0)
i (t) is the (1, 0) adjacent polynomial.
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Connections between DGS- and L-bounds (3)

For every �xed (cardinality) M > D(n, 2k) there exist uniquely

determined real numbers −1 = β0 < β1 < · · · < βk < 1 and positive

γ0, γ1, . . . , γk , such that the equality

f0 =
f (1)

N
+

k∑
i=0

γi f (βi )

is true for every real polynomial f (t) of degree at most 2k .

The numbers βi , i = 1, 2, . . . , k , are the roots of the equation

Pk(t)Pk−1(s)− Pk(s)Pk−1(t) = 0,

where s = βk , Pi (t) = P
(1,1)
i (t) is the (1, 1) adjacent polynomial.
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Connections between DGS- and L-bounds (4)

So we always take care where the cardinality M is located with respect

to the Delsarte-Goethals-Seidel bound. It follows that

M ∈ [D(n, τ),D(n, τ + 1)] ⇐⇒ s ∈ Iτ ,

where s and M are connected by the equality

M = Lτ (n, s),

and

τ := τ(n,M)

is correctly de�ned.

Therefore we associate M with the corresponding numbers

α0, α1, . . . , αk−1, ρ0, ρ1, . . . , ρk−1 when M ∈ [D(n, 2k − 1),D(n, 2k)),

β0, β1, . . . , βk , γ0, γ1, . . . , γk when M ∈ [D(n, 2k),D(n, 2k + 1)).
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Asymptotic of ULB (1)

We consider the behaviour of our bounds in the asymptotic process where

the strength τ is �xed, and the dimension n and the cardinality M tend

simultaneously to in�nity in certain relation. We consider sequence of

codes of cardinalities (Mn) satisfying Mn ∈ Iτ = (R(n, τ),R(n, τ + 1)) for
n = 1, 2, 3, . . . and

lim
n→∞

Mn

nk−1
=


2

(k−1)! + γ, τ = 2k − 1,

1

k! + γ, τ = 2k ,

(here γ ≥ 0 is a constant and the terms 2

(k−1)! and
1

k! come from the

Delsarte-Goethals-Seidel bound).
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Asymptotic of ULB (2)

Recall that the nodes αi = αi (n, 2k − 1,M), i = 0, . . . , k − 1, are de�ned

for positive integers n, k , and M satisfying M > R(n, 2k − 1) and that the

nodes βi = βi (n, 2k ,M), i = 0, . . . , k , are de�ned if M > R(n, 2k).

Lemma

If τ = 2k − 1 for some integer k , then

lim
n→∞

α0(n, 2k − 1,Mn) = −1/(1+ γ(k − 1)!), and

lim
n→∞

αi (n, 2k − 1,Mn) = 0, i = 1, . . . , k − 1.

If τ = 2k for some integer k , then

lim
n→∞

βi (n, 2k ,Mn) = 0, i = 1, . . . , k.
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Asymptotic of ULB (3)

Sketch of the proof

limn→∞ αi = 0, i = 1, . . . , k − 1, follow from the inequalities

t1,1k > |αk−1| > |α1| > |αk−2| > |α2| > · · · .

For α0 � use the Vieta formula

k−1∑
i=0

αi =
(n + 2k − 1)(n + k − 2)

(n + 2k − 2)(n + 2k − 3)
·
P1,0
k (s)

P1,0
k−1(s)

− k

n + 2k − 2

to conclude that

lim
n→∞

α0 = lim
n→∞

P
(1,0)
k (s)

P
(1,0)
k−1 (s)

.
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Asymptotic of ULB (4)

The behavior of the ratio P
(1,0)
k (s)/P

(1,0)
k−1 (s) can be found by using certain

identities by Levenshtein:

Mn =

(
1−

P
(1,0)
k−1 (s)

P
(n)
k (s)

)
D(n, 2k − 2) =

(
1−

P
(1,0)
k (s)

P
(n)
k (s)

)
D(n, 2k).

These imply

lim
n→∞

P
(n)
k (s)

P
(1,0)
k−1 (s)

= − 1

1+ γ(k − 1)!
, lim

n→∞

P
(1,0)
k (s)

P
(n)
k (s)

= 1,

correspondingly. Therefore

lim
n→∞

α0 =
P
(1,0)
k (s)

P
(1,0)
k−1 (s)

= − 1

1+ γ(k − 1)!
.
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Asymptotic of ULB (5)

Similarly, limn→∞ βi = 0 follows easy for i ≥ 2,

then limn→∞ β1 = 0 is obtained by using the formula

k−1∑
i=1

βi =
(n − k − 1)P

(1,1)
k (s)

nP
(1,1)
k−1 (s)

and investigation of the ratio P
(1,1)
k (s)/P

(1,1)
k−1 (s) in the interval I2k � it is

non-positive, increasing, equal to zero in the right end s = t1,1k , and

tending to 0 as n tends to in�nity in the left end s = t1,0k .
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Asymptotic of ULB (6)

Recall that in the case τ = 2k − 1 there are associated weights

ρi = ρi (n, 2k − 1,Mn), i = 0, . . . , k − 1, and, similarly, in the case τ = 2k
there are weights γi = γi (n, 2k − 1,Mn), i = 0, . . . , k .
In view of the Lemma we need the asymptotic of ρ0(n, 2k − 1,Mn)Mn only.

Lemma

If τ = 2k − 1, then

lim
n→∞

ρ0(n, 2k − 1,Mn)Mn = (1+ γ(k − 1)!)2k−1.
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Asymptotic of ULB (7)

This follows from the asymptotic of α0 and the formula

ρ0(n, 2k − 1,Mn)Mn = −
(1− α2

1
)(1− α2

2
) · · · (1− α2k−1)

α0(α20 − α21)(α20 − α22) · · · (α20 − α2k−1)

(can be derived by setting f (t) = t, t3, . . . , t2k−1 in the quadrature rule

and resolving the obtained linear system with respect to ρ0, . . . , ρk−1).
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Asymptotic of ULB (8)

Theorem

lim inf
n→∞

E(n,Mn; h)

Mn
≥ h(0).
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Asymptotic of ULB (9)

Let τ = 2k − 1. We deal with the odd branch of our ULB

E(n,Mn; h) ≥ Mn

k−1∑
i=0

ρih(αi )

= Mn

(
ρ0h(α0) + h(0)

k−1∑
i=1

ρi + o(1)

)

= Mn

(
ρ0(h(α0)− h(0)) + h(0)

(
1− 1

Mn
+ o(1)

))
= h(0)Mn + c3 +Mno(1),

where o(1) is a term that goes to 0 as n→∞ and

c3 =
(
(1+ γ(k − 1)!)2k−1

)(
h

(
− 1

1+ γ(k − 1)!

)
− h(0)

)
− h(0).
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Asymptotic of ULB (10)

Similarly, in the even case we obtain

E(n,Mn; h) ≥ Mn

(
γ0(h(−1)− h(0)) + h(0)

(
1− 1

Mn

)
+ o(1)

)
= h(0)Mn + c4 +Mno(1),

where c4 = γ0Mn(h(−1)− h(0))− h(0) (here γ0Mn ∈ (0, 1)).
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More precise asymptotic (1)

Theorem

If τ = 2k − 1 then

lim
n→∞

Mn

k−1∑
i=0

ρ
(n)
i h(α

(n)
i )−

k−1∑
j=0

h(2j)(0)

(2j)!
· b2j


= γ2k−1k

(
h

(
− 1

γk

)
− P2k−1

(
− 1

γk

))
,

where b2j =
∫
1

−1 t
2j(1− t2)(n−3)/2dt = (2j−1)!!

n(n+2)...(n+2j−2) ,

γk = 1+ γ(k − 1)! and P2k−1(t) =
∑k−1

j=0

h(2j)(0)
(2j)! t j .
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More precise asymptotic (2)

Observe that h(t) ≥ P2k−1(t) for every t ∈ [−1, 1), and, furthermore,

0 ≤ h(α
(n)
i )− P2k−1(α

(n)
i ) ≤ h(2k)(ξ)

(2k)!
· |α(n)

i |
2k , (1)

where |ξ| ∈ (0, |α(n)
i |), i = 1, 2 . . . , k − 1, by the Taylor expansion formula.

Since c1√
n
≤ t1,1k ≤ c2√

n
for some constants c1 and c2, and for every n, it

follows that

Mn

k−1∑
i=1

ρ
(n)
i

(
h(α

(n)
i )− P2k−1(α

(n)
i )
)
= O(1/n).

PB, PD, DH, ES, MS Asymptotic bounds for energy of spherical codes and designsFort Wayne 2016 28 / 31



More precise asymptotic (3)

Corollary

If τ = 2k − 1 then

lim inf
n→∞

E(n,Mn; h)

Mn
= h(0)

and

lim inf
n→∞

E(n,Mn; h)− h(0)Mn

Mn
· n =

h′′(0)

2
.
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What next?

We do not know the asymptotic of our bounds in the case when the

dimension n is �xed, and the cardinality M tends to in�nity (with τ).
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Thank you for your attention!
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