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The Bergman space

Let Ω ⊂ Cn be an open domain. As usual, we define

L2(Ω) :=

{
f :

∫
Ω
|f (z)|2 dV (z) < ∞

}
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Let Ω ⊂ Cn be an open domain. As usual, we define

L2(Ω) :=

{
f :

∫
Ω
|f |2 dV (z) < ∞

}
.

The Bergman space is a subset of L2(Ω) defined by

A2(Ω) :=
{
f ∈ L2(Ω) : f is holomorphic

}
.

By the mean value property for holomorphic functions, for
f ∈ A2(Ω) and K ⊂ Ω compact,

sup
K

|f (z)| ≤ c∥f ∥L2(Ω).

Hence A2(Ω) is a closed Hilbert subspace of L2(Ω).



The Bergman kernel

Since the evaluation functional is a bounded linear functional on
A2(Ω), the Riesz representation theorem ensures that for each
z ∈ Ω and each f ∈ A2(Ω) there is a function BΩ(z ,w) that is
holomorphic in z and antiholomorphic in w such that

f (z) =

∫
Ω
f (w)BΩ(z ,w) dV (w).
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The Bergman kernel

Since the evaluation functional is a bounded linear functional on
A2(Ω), the Riesz representation theorem ensures that for each
z ∈ Ω and each f ∈ A2(Ω) there is a function BΩ(z ,w) that is
holomorphic in z and antiholomorphic in w such that

f (z) =

∫
Ω
f (w)BΩ(z ,w) dV (w),

This integral kernel BΩ(z ,w) is called the Bergman kernel and the
associated integral operator is called the Bergman projection and
denoted by B.

Studying the mapping properties of this integral operator and its
kernel is a well-known topic in several complex variables!
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▶ strongly pseudoconvex domains (Fefferman, Phong-Stein 70’s)

▶ convex domains of finite-type in Cn (McNeal-Stein ’86
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What do the Bergman kernel and projection look like?

On D = {|z | < 1} ,

Bf (z) =

∫
D

f (w)

π(1− zw̄)2
dV (w)

Note that the kernel is not uniformly in L1(D) and hence Hölder’s
inequality fails to imply the Lp boundedness of B.

Theorem
The Bergman projection on D is bounded on Lp(D) for all
p ∈ (1,∞). In fact, the same range of boundedness holds for the
operator

Bαf (z) =

∫
D

|w |α

|1− zw̄ |2
|f (w)| dV (w),

provided that α > −2.



Method of proof: Schur’s lemma

Lemma
Let Ω ⊂ Cn be a domain, K an a.e. positive measurable function
on Ω× Ω and K the associated integral operator to K . Suppose
there exists a positive auxiliary function h on Ω and 0 < a < b
such that for all ε > 0 the following hold

K(h−ε)(z) =

∫
Ω
K (z ,w)h(w)−ε dV (w) ≲ h(z)−ε;

K(h−ε)(w) =

∫
Ω
K (z ,w)h(z)−ε dV (z) ≲ h(w)−ε.

Then K is bounded on Lp(Ω) for all p ∈
(
a+b
b , a+b

a

)
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Lemma
Let Ω ⊂ Cn be a domain, K an a.e. positive measurable function
on Ω× Ω and K the associated integral operator to K . Suppose
there exists a positive auxiliary function h on Ω and 0 < a < b
such that for all ε > 0 the following hold

K(h−ε)(z) =

∫
Ω
K (z ,w)h(w)−ε dV (w) ≲ h(z)−ε;

K(h−ε)(w) =

∫
Ω
K (z ,w)h(z)−ε dV (z) ≲ h(w)−ε.

Then K is bounded on Lp(Ω) for all p ∈
(
a+b
b , a+b

a

)
.

Remark
In practice, the function h vanishes on the set where K (z ,w) is
singular; hence K (z ,w)h(z)−ε is “worse” as its L1 norm is
algebraic rather than logarithmic.



A classical estimate

Theorem (Forelli-Rudin 80’s)

For β > −2 and any ε > 0, the following holds:∫
D

(1− w)−ε

|1− zw̄ |2
|w |β dV (w) ≲ (1− |z |2)−ε.



A classical estimate

Theorem (Forelli-Rudin 80’s)

For β > −2 and any ε > 0, the following holds:∫
D

(1− |w |2)−ε

|1− zw̄ |2
|w |β dV (w) ≲ (1− |z |2)−ε.

Hence we may apply Schur’s lemma with h(z) = 1− |z |2.

The proof of the preceding estimate is well-known and uses
non-trivial asymptotic analysis; an alternate proof makes use of a
decomposition and residue calculus.

Essentially, we decompose into cases where |z | < 1/2 and
|z | ≥ 1/2 to handle the singularity in the denominator.
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Case 1: |z | < 1/2, so that∫
D

(1− |w |2)−ε

|1− zw̄ |2
|w |β dV (w) ≈

∫
D
(1− |w |2)−ε|w |β dV (w) < ∞,

for β > −2 and ε ∈ (0, 1).

Case 2: |z | ≥ 1/2 and further subdivide into |w | < 1
2|z| and

|w | ≥ 1
2|z| :

If |w | < 1
2|z| , then |1− zw̄ | ≥ 1/2 and we proceed as above.



If |w | ≥ 1
2|z| , then∫

|w |≥ 1
2|z|

(1− |w |2)−ε

|1− zw̄ |2
dV (w)

=

∫ 1

1
2|z|

r(1− r2)−ε

(∫ 2π

0

dθ

1− 2r |z | cos θ + r2|z |2
dθ

)
dr .



If |w | ≥ 1
2|z| , then∫

|w |≥ 1
2|z|

(1− |w |2)−ε

|1− zw̄ |2
dV (w)

=

∫ 1

1
2|z|

r(1− r2)−ε

(∫ 2π

0

dθ

1− 2r |z | cos θ + r2|z |2
dθ

)
dr .

Using residue calculus, the inner integral is comparable to
(1− r2|z |2)−1, and∫ 1

1
2|z|

r(1− r2)−ε

1− r2|z |2
≲ (1− |z |2)ε,

using a trivial overestimate.



Domains of lower regularity classes

If the boundary of Ω is non-smooth, the range of p for which the
Bergman projection is Lp bounded on is potentially smaller than
(1,∞). There are also function spaces that are norm-bounded only
for the trivial exponent p = 2. Domains and function spaces that
have been studied include
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The projection on the disk

On D = {|z | < 1} ,

BDf (z) =

∫
D

f (w)

π(1− zw̄)2
dV (w)

The integral operator BD is bounded on Lp(D) for all p ∈ (1,∞).
This also holds for Dn.

▶ The operator is unbounded on L1(D) (logarithmically)

▶ A Caldéron-Zygmund decomposition shows that B is of
weak-type (1, 1).

Historically, much work has been done in the case that our domain
is smooth or well-behaved (unit ball, unit disk, polydisk Dn, etc.)
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A linear operator T acting on Lp(X ) is said to be of weak-type
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Weak-type regularity

A linear operator T acting on Lp(X ) is said to be of weak-type
(p, p) if

|{x ∈ X : |Tf (x)| > λ}| ≤ c
∥f ∥pp
λp

,

with c > 0 independent of f .

If T is bounded on Lp, it is of weak-type (p, p) by Chebychev’s
inequality. But weak-type regularity is useful because of
Marcinkiewicz interpolation:

Theorem (Real interpolation)

If T is of weak-type (a, a) and of weak-type (b, b), then it is
bounded on Lp(X ) for all a < p < b.



Weak-type regularity of other singular integral operators

Consider the Hardy-Littlewood maximal function on R:

Mf (x) = sup
r>0

1

|B(x , r)|

∫
B(x ,r)

|f (y)| dy

and the Hilbert transform:

Hf (x) :=
1

π
p.v.

∫
R

f (y)

x − y
dy

▶ Both M and H are bounded in Lp(R) for all p ∈ (1,∞).

▶ Both are unbounded on L1, but they are of weak-type (1, 1).

If given an operator that is known to be bounded on Lp(X ) for
some a < p < b, analysts generally expect it to be of weak-type
(a, a) and (b, b).
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Generalized Hartogs triangles

The generalized Hartogs triangle, Hγ , is given by

Hγ := {(z1, z2) ∈ C2 : |z1|γ < |z2| < 1}

for γ > 0. In light of the following theorem, we are particularly
interested when γ = m

n ∈ Q+.

Theorem (Edholm-McNeal ’16)

The Bergman projection on Hγ (as above) is bounded on Lp(Hγ)
only for p = 2 if γ ̸∈ Q+. If γ = m/n ∈ Q+, then the Bergman
projection is bounded on Lp(Hm/n) if and only if

p ∈
(

2m + 2n

m + n + 1
,
2m + 2n

m + n − 1

)
.



Our result in C2

As Huo-Wick did for the classical triangle, we proved that the
Bergman projection on the rational Hartogs triangle Hm/n satisfies
a weak-type estimate only at the upper-endpoint of Lp

boundedness:

Theorem (C.-Koenig ’22)

The Bergman projection on Hm/n is of weak-type(
2m+2n
m+n−1 ,

2m+2n
m+n−1

)
, but is not of weak-type
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Our result in C2

As Huo-Wick did for the classical triangle, we proved that the
Bergman projection on the rational Hartogs triangle Hm/n satisfies
a weak-type estimate only at the upper-endpoint of Lp

boundedness:

Theorem (C.-Koenig ’22)

The Bergman projection on Hm/n is of weak-type(
2m+2n
m+n−1 ,

2m+2n
m+n−1

)
, but is not of weak-type

(
2m+2n
m+n+1 ,

2m+2n
m+n+1

)
.

Question
Does this phenomenon extend to higher dimsensions?
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Weak-type regularity on triangles in C3

Consider the natural analogue to the rational Hartogs triangle in
C3:

Hp =
{
(z1, z2, z3) ∈ C3 : |z1|p1 < |z2|p2 < |z3|p3 < 1

}
,

where p ∈ N3 and gcd(p1, p2, p3) = 1. Park (2019) computed an
explicit form of the Bergman kernel for Hp and S. Zhang (2021)
showed that B is bounded on Lp(Hp) if and only if

p ∈
(

2L
L+D , 2L

L−D

)
, where L = p1p2 + p1p3 + p2p3 and

D = gcd(p1p2, p1p3, p2p3).
Indeed, we observed the same one-sided weak-type phenomenon in
C3:

Theorem (C.-Koenig 2023)

The Bergman projection on Hp is not of weak-type
(

2L
L+D , 2L

L+D

)
but is of weak-type

(
2L

L−D , 2L
L−D

)
.



Proof sketch of positive result

1. Obtain pointwise estimate on Bergman kernel using
asymptotics

2. Transform integral for weak-type estimate on Hp to integral
on D3 using proper holomorphic maps.

3. Decompose integral on D3 into 8 cases, according to whether
|z1|, |z2|, |z3| is close to zero or bounded away from zero.



Failure of weak-type regularity at lower endpoint p = 2L
L+D

We must exhibit a counter-example fλ ∈ Lp(Hp) and constants cλ
(with cλ → ∞ as λ → ∞) such that

|{(z1, z2, z3) ∈ Hp : |Bf (z1, z2, z3)| > λ}| > cλ
∥f ∥pLp(Hp)

λp
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We must exhibit a counter-example fλ ∈ Lp(Hp) and constants cλ
(with cλ → ∞ as λ → ∞) such that

|{(z1, z2, z3) ∈ Hp : |Bfλ(z1, z2, z3)| > λ}| > cλ
∥fλ∥pLp(Hp)

λp
.

Namely,

fλ(z1, z2, z3) = f (z1, z2, z3) = z̄−k
1 |z1|k z̄−ℓ

2 |z2|ℓz̄a33 |z3|b3 ,

where k , ℓ ∈ N ∪ {0}, a3 ∈ N and b3 = b3(λ) ∈ R+.

(We define f to be zero if z1 = 0 or z2 = 0).

This function f is loosely based on the two-dimensional examples
of Huo-Wick 2020 and C.-Koenig 2022.



Finding the Lp norm and Bergman projection for f

For such f (z1, z2, z3) = z̄−k
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Finding the Lp norm and Bergman projection for f

For such f (z1, z2, z3) = z̄−k
1 |z1|k z̄−ℓ

2 |z2|ℓz̄a33 |z3|b3 ,

∥f ∥pLp(Hp)
=

2π3(
p1
p2

+ 1
)(

p(a3 + b3) +
2p3
p1

+ 2p3
p3

+ 2
)

By construction, the norm does not depend on k or ℓ.

Finding a closed form for the Bergman kernel on Hp is difficult
(see, for example, J.-D. Park 2019).
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An alternate characterization of the Bergman kernel

A Riesz-Fisher argument can be used to show that the Bergman
kernel is realized by a series of the orthonormal basis elements of
the Bergman space. That is, if {ϕj}∞j=1 is an orthonormal basis for

A2(Ω), then

B(z ,w) =
∞∑
j=1

ϕj(z)ϕj(w).

In our case, suitably normalized sums of three-variable monominals
can be taken as the orthonormal basis:

wα1
1 wα2

2 wα3
3

∥wα1
1 wα2

2 wα3
3 ∥2

L2(Hp)

, (1)

provided that the monomial wα1
1 wα2

2 wα3
3 is square integrable near

the origin.



Calculating the Bergman projection Bf (z1, z2, z3)
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Calculating the Bergman projection Bf (z1, z2, z3)

For our f ,

Bf (z1, z2, z3)

=

∫
Hp

∑
α∈A

(z1w̄1)
α1(z2w̄2)

α2(z3w̄3)
α3

∥wα1
1 wα2

2 wα3
3 ∥2

L2(Hp)

w̄−k
1 |w1|k w̄−ℓ

2 |w2|ℓw̄a3
3 |w3|b3

dV (w1,w2,w3).

The set A of allowable indices consists of the triples
(α1, α2, α3) ∈ Z3 satisfying the following three conditions:

α1 ≥ 0,

α2 +
p2
p1

(α1 + 1) > −1,

α3 +
p3
p2

(α2 +
p2
p1

(α1 + 1) + 1) > −1.
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Taking advantage of orthogonality

By orthogonality,

=

∫
Hp

∑
α∈A

(z1w̄1)
α1(z2w̄2)

α2(z3w̄3)
α3

∥wα1
1 wα2

2 wα3
3 ∥2

L2(Hp)

w̄−k
1 |w1|k w̄−ℓ

2 |w2|ℓw̄a3
3 |w3|b3

dV (w1,w2,w3)

vanish EXCEPT WHEN

α1 = k ,

α2 = ℓ,

α3 = −a3.

Since (α1, α2, α3) ∈ Z3, it must be the case that k , ℓ, and a3 are
integers.



Selecting parameters

If p1 = p2 = 1, we take ℓ = k = 0 so

f (z1, z2, z3) = z̄a33 |z3|b3

(This version of the function is similar to the one used by
Huo-Wick 2020.)



Selecting parameters

If p1 = p2 = 1, we take ℓ = k = 0 so
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By Bézout’s identity, there exist x1, x2, x3 ∈ Z such that

x1p1p3 + x2p2p3 + x3p1p2 = gcd(p1p3, p2p3, p1p3) = D.

In particular,

x1p1p3 + x2p2p3 ≡ D mod (p1p2).

Adding a multiple of p1p2 to x1 and x2 if necessary, we may
assume x1, x2 ∈ N and then take ℓ+ 1 = x1 and k + 1 = x2.
Thereby ensuring that k , ℓ ∈ Z.

Note that α1 = k ≥ 0 and ℓ+ p2
p1
(k + 1) > −1 since ℓ ≥ 0.
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a3 =
ℓp1p3 + kp2p3 + L− D

p1p2
> 0.

Observe that a3 ∈ N since

ℓp1p3 + kp2p3 + L− D ≡ 0 mod (p1p2).

Therefore, the triple (k, ℓ,−a3) ∈ A ⊂ Z3.

Consequently,

Bf (z1, z2, z3) =
zk1 z

ℓ
2z

−a3
3

∥wk
1 w

ℓ
2w

−a3
3 ∥2

L2(Hp)

∫
Hp

|w1|k |w2|ℓ|w3|b3 dV (w1,w2,w3)

=
8π3zk1 z

ℓ
2z

−a3
3

c ′(k + 2)
(
ℓ+ p2

p1
(k + 2) + 2

)(
b3 +

p3
p2

(
ℓ+ p2

p1
(k + 2) + 2

)
+ 2

) .



Selecting b3 ∈ R
Working with the quantity

8π3

c ′(k + 2)
(
ℓ+ p2

p1
(k + 2) + 2

)(
b3 +

p3
p2

(
ℓ+ p2

p1
(k + 2) + 2

)
+ 2
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Selecting b3 ∈ R
Working with the quantity

8π3

c ′(k + 2)
(
ℓ+ p2

p1
(k + 2) + 2

)(
b3 +

p3
p2

(
ℓ+ p2

p1
(k + 2) + 2

)
+ 2

) ,
set γ = ℓ+ p2

p1
(k + 2) + 2 and b3 = λ−δ − p3

p2
γ − 2, where δ > 0 is

to be determined.

With this choice,

Bf (z1, z2, z3) = czk1 z
ℓ
2z

−a3
3 λδ,

and

∥f ∥pLp(Hp)
=

2π3

p
(
p2
p1

+ 1
) · λδ.

with c > 0 independent of λ.
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Define

H̃ :=

{
(z1, z2, z3) ∈ Hp :

(
1

2
|z3|

)p3

< |z1|p1 < |z2|p2 < |z3|p3 < 1

}
.

For λ > 0,

|{(z1, z2, z3) ∈ Hp : |Bf (z1, z2, z3)| > λ}|

≥
∣∣∣{(z1, z2, z3) ∈ H̃ : c|zk1 zℓ2z

−a3
3 |λδ > λ

}∣∣∣
≥

∣∣∣{(z1, z2, z3) ∈ H̃ : c ′|z3|
p3
p1

k+
p3
p2

ℓ−a3λδ > λ
}∣∣∣

=

∣∣∣∣∣
{
(z1, z2, z3) ∈ H̃ : |z3| <

(
c ′λδ−1

) 1

a3−
p3
p2

ℓ− p3
p1

k

}∣∣∣∣∣
=

∣∣∣∣{(z1, z2, z3) ∈ H̃ : |z3| < c ′′
(
λδ−1

) p1p2
L−D

}∣∣∣∣ ,



In the region∣∣∣∣{(z1, z2, z3) ∈ H̃ : |z3| < c ′′
(
λδ−1

) p1p2
L−D

}∣∣∣∣
note that |z3| < 1 for λ sufficiently large provided that δ ∈ (0, 1).



In the region∣∣∣∣{(z1, z2, z3) ∈ H̃ : |z3| < c ′′
(
λδ−1

) p1p2
L−D

}∣∣∣∣ (2)

note that |z3| < 1 for λ sufficiently large provided that δ ∈ (0, 1).
For such λ,

(2) = π2

∫{
|z3|<c ′′(λδ−1)

p1p2
L−d

} η|z3|
2p3
p1

+
2p3
p2 dV (z3),

where

η =
1− 2

−
(

2p3
p1

+
2p3
p2

)
p2
p1

+ 1
− 2

− 2p3
p1 (1− 2

−2p3
p2 ) > 0



Parameter blowup

Finally,

π2

∫{
|z3|<c ′′(λδ−1)

p1p2
L−d

} η|z3|
2p3
p1

+
2p3
p2 dV (z3)

=
π3η

p3
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+ p3
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+ 1

(
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Parameter blowup

Finally,

π2

∫{
|z3|<c ′′(λδ−1)

p1p2
L−d

} η|z3|
2p3
p1

+
2p3
p2 dV (z3)

=
π3η

p3
p1

+ p3
p2

+ 1

(
c ′′λ(δ−1)

p1p2
L−D

) 2p3
p1

+
2p3
p2

+2

≈ λ(δ−1)p′ ≈
∥f ∥pLp(Hp)

λp
λ(δ−1)p′+p−δ.

Note that 1 < p < p′ so by choosing δ ∈
(
p′−p
p′−1 , 1

)
, the factor

λ(δ−1)p′+p−δ blows up as λ → ∞. (Recall ∥f ∥pLp(Hp)
≈ λδ).

Therefore, the weak-type estimate fails.
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