Zeros of Ultraspherical Polynomials

Kathy Driver

University of Cape Town
Visiting Vanderbilt University

Joint work with Martin Muldoon

Midwestern Workshop October 7, 2017

$$(1-x)^2y'' - (2\lambda + 1)xy' + n(n+2\lambda)y = 0$$

$$(1-x)^2y'' - (2\lambda + 1)xy' + n(n+2\lambda)y = 0$$

 $\lambda=1$: Chebyshev polynomials of second kind

$$(1-x)^2y'' - (2\lambda + 1)xy' + n(n+2\lambda)y = 0$$

 $\lambda=1$: Chebyshev polynomials of second kind

 $\lambda = \frac{1}{2}$: Legendre polynomials

$$(1-x)^2y'' - (2\lambda + 1)xy' + n(n+2\lambda)y = 0$$

 $\lambda=1$: Chebyshev polynomials of second kind

 $\lambda = \frac{1}{2}$: Legendre polynomials

$$C_n^{(\lambda)}(x) = \sum_{m=0}^{\lfloor n/2 \rfloor} \frac{(\lambda)_{n-m}}{m!(n-2m)!} (2x)^{n-2m}$$

$$(1-x)^2y'' - (2\lambda + 1)xy' + n(n+2\lambda)y = 0$$

 $\lambda=1$: Chebyshev polynomials of second kind

 $\lambda = \frac{1}{2}$: Legendre polynomials

$$C_n^{(\lambda)}(x) = \sum_{m=0}^{\lfloor n/2 \rfloor} \frac{(\lambda)_{n-m}}{m!(n-2m)!} (2x)^{n-2m}$$

Special case $\alpha=\beta=\lambda-\frac{1}{2}$ of Jacobi polynomials $P_n^{(\alpha,\beta)}$

Orthogonal Ultraspherical Polynomials $C_n^{(\lambda)}$, $\lambda > -1/2$

Orthogonal Ultraspherical Polynomials $\overline{C_n^{(\lambda)}}, \lambda > -1/2$

$$\{C_n^{(\lambda)}\}_{n=0}^{\infty}$$
 is orthogonal on $(-1,1)$ for $\lambda>-1/2$

$$\int_{-1}^{1} x^{k} C_{n}^{(\lambda)}(x) (1 - x^{2})^{\lambda - 1/2} dx = 0 \quad \text{for} \quad k = 0, \dots, n - 1.$$

 $\lambda > -\frac{1}{2}$ ensures convergence of the integral

Orthogonal Ultraspherical Polynomials $\overline{C_n^{(\lambda)}}, \lambda > -1/2$

$$\{C_n^{(\lambda)}\}_{n=0}^\infty$$
 is orthogonal on $(-1,1)$ for $\lambda>-1/2$

$$\int_{-1}^{1} x^{k} C_{n}^{(\lambda)}(x) (1 - x^{2})^{\lambda - 1/2} dx = 0 \quad \text{for} \quad k = 0, \dots, n - 1.$$

 $\lambda > -\frac{1}{2}$ ensures convergence of the integral

The zeros of $C_{n-1}^{(\lambda)}$ and $C_n^{(\lambda)}$ are interlacing:

$$-1 < x_{1,n} < x_{1,n-1} < x_{2,n} < \cdots < x_{n-1,n} < x_{n-1,n-1} < x_{n,n} < 1$$

Orthogonal Ultraspherical Polynomials $\overline{C_n^{(\lambda)}}, \lambda > -1/2$

$$\{C_n^{(\lambda)}\}_{n=0}^{\infty}$$
 is orthogonal on $(-1,1)$ for $\lambda > -1/2$

$$\int_{-1}^{1} x^{k} C_{n}^{(\lambda)}(x) (1 - x^{2})^{\lambda - 1/2} dx = 0 \quad \text{for} \quad k = 0, \dots, n - 1.$$

 $\lambda > -\frac{1}{2}$ ensures convergence of the integral

The zeros of $C_{n-1}^{(\lambda)}$ and $C_n^{(\lambda)}$ are interlacing:

$$-1 < x_{1,n} < x_{1,n-1} < x_{2,n} < \cdots < x_{n-1,n} < x_{n-1,n-1} < x_{n,n} < 1$$

The zeros of $C_n^{(\lambda)}(x)$ and $(1-x^2)C_{n-1}^{(\lambda)}(x)$ are interlacing

$$\lambda < -1/2$$

Zeros of $\overline{C_n^{(\lambda)}}$, $\lambda < -1/2$

$$\lambda < -1/2$$

Is the sequence $\{C_n^{(\lambda)}\}_{n=0}^{\infty}$ orthogonal for any value(s) of $\lambda < -1/2$?

$$\lambda < -1/2$$

Is the sequence $\{C_n^{(\lambda)}\}_{n=0}^{\infty}$ orthogonal for any value(s) of $\lambda < -1/2$?

If the sequence is orthogonal for some $\lambda<-\frac{1}{2},$ what is the measure of orthogonality?

$$\lambda < -1/2$$

Is the sequence $\{C_n^{(\lambda)}\}_{n=0}^{\infty}$ orthogonal for any value(s) of $\lambda < -1/2$?

If the sequence is orthogonal for some $\lambda < -\frac{1}{2}$, what is the measure of orthogonality?

Are the *n* zeros of $C_n^{(\lambda)}$ all real? Distinct? All in (-1,1)?

$$\lambda < -1/2$$

Is the sequence $\{C_n^{(\lambda)}\}_{n=0}^{\infty}$ orthogonal for any value(s) of $\lambda < -1/2$?

If the sequence is orthogonal for some $\lambda<-\frac{1}{2},$ what is the measure of orthogonality?

Are the *n* zeros of $C_n^{(\lambda)}$ all real? Distinct? All in (-1,1)?

If the zeros of $C_n^{(\lambda)}$ are all real and distinct

$$\lambda < -1/2$$

Is the sequence $\{C_n^{(\lambda)}\}_{n=0}^{\infty}$ orthogonal for any value(s) of $\lambda < -1/2$?

If the sequence is orthogonal for some $\lambda<-\frac{1}{2},$ what is the measure of orthogonality?

Are the *n* zeros of $C_n^{(\lambda)}$ all real? Distinct? All in (-1,1)?

If the zeros of $C_n^{(\lambda)}$ are all real and distinct

are the zeros of $C_{n-1}^{(\lambda)}$ and $C_n^{(\lambda)}$ interlacing?

As λ decreases below $-\frac{1}{2}$, two zeros of $C_n^{(\lambda)}$ leave (-1,1) through -1 and 1. Each time λ decreases below $-1/2, -3/2, -5/2, \dots$ two more zeros leave (-1,1). When λ reaches 1/2 - [n/2], no zeros of $C_n^{(\lambda)}$ remain in (-1,1)

As λ decreases below $-\frac{1}{2}$, two zeros of $C_n^{(\lambda)}$ leave (-1,1) through -1 and 1. Each time λ decreases below -1/2, -3/2, -5/2, ... two more zeros leave (-1,1). When λ reaches 1/2-[n/2], no zeros of $C_n^{(\lambda)}$ remain in (-1,1)

As λ decreases below the negative integer -[(n+1)/2], two zeros of $C_n^{(\lambda)}$ join the imaginary axis and another pair joins the imaginary axis each time λ decreases through successive negative integers.

As λ decreases below $-\frac{1}{2}$, two zeros of $C_n^{(\lambda)}$ leave (-1,1) through -1 and 1. Each time λ decreases below $-1/2, -3/2, -5/2, \ldots$ two more zeros leave (-1,1). When λ reaches 1/2-[n/2], no zeros of $C_n^{(\lambda)}$ remain in (-1,1)

As λ decreases below the negative integer -[(n+1)/2], two zeros of $C_n^{(\lambda)}$ join the imaginary axis and another pair joins the imaginary axis each time λ decreases through successive negative integers.

For $\lambda < 1 - n$, $C_n^{(\lambda)}(x)$ has n distinct pure imaginary zeros.

As λ decreases below $-\frac{1}{2}$, two zeros of $C_n^{(\lambda)}$ leave (-1,1) through -1 and 1. Each time λ decreases below $-1/2, -3/2, -5/2, \dots$ two more zeros leave (-1,1). When λ reaches 1/2-[n/2], no zeros of $C_n^{(\lambda)}$ remain in (-1,1)

As λ decreases below the negative integer -[(n+1)/2], two zeros of $C_n^{(\lambda)}$ join the imaginary axis and another pair joins the imaginary axis each time λ decreases through successive negative integers.

For $\lambda < 1 - n$, $C_n^{(\lambda)}(x)$ has n distinct pure imaginary zeros.

D-Duren 2000. A specific number of zeros of $C_n^{(\lambda)}$ collide at the endpoints 1 and -1 of the interval of orthogonality each time λ decreases through the next successive negative half-integer. The location and kinematics of the zeros at each stage of the process are known.

$$-3/2 < \lambda < -1/2$$

$$-3/2 < \lambda < -1/2$$

Only $\lambda-$ range apart from $\lambda>-\frac{1}{2}$ for which all n zeros of $C_n^{(\lambda)}$ are real

$$-3/2 < \lambda < -1/2$$

Only $\lambda-$ range apart from $\lambda>-\frac{1}{2}$ for which all n zeros of $C_n^{(\lambda)}$ are real

Sequence $\{C_n^{(\lambda)}\}_{n=0}^{\infty}$ quasi-orthogonal order 2 on (-1,1)

$$-3/2 < \lambda < -1/2$$

Only $\lambda-$ range apart from $\lambda>-\frac{1}{2}$ for which all n zeros of $C_n^{(\lambda)}$ are real

Sequence $\{C_n^{(\lambda)}\}_{n=0}^{\infty}$ quasi-orthogonal order 2 on (-1,1)

Quasi-orthogonality:Riesz (Moment Problem), Fejer, Shohat, Chihara...

$$\int_{-1}^{1} x^{k} C_{n}^{(\lambda)}(x) (1 - x^{2})^{\lambda + 1/2} dx = 0 \quad \text{for} \quad k = 0, \dots, n - 3.$$

Zeros of
$$C_n^{(\lambda)}$$
, $-3/2 < \lambda < -1/2$

Brezinski-D-Redivo-Zaglia 2004

$$x_{1,n} < -1 < x_{2,n} < \cdots < x_{n-1,n} < 1 < x_{n,n}$$

Zeros of
$$C_n^{(\lambda)}$$
, $-3/2 < \lambda < -1/2$

Brezinski-D-Redivo-Zaglia 2004

$$x_{1,n} < -1 < x_{2,n} < \cdots < x_{n-1,n} < 1 < x_{n,n}$$

Zeros of (orthogonal) $C_{n-1}^{(\lambda+1)}$ interlace zeros of (quasi-orthogonal) $C_n^{(\lambda)}$

Zeros of
$$C_n^{(\lambda)}$$
, $-3/2 < \lambda < -1/2$

Brezinski-D-Redivo-Zaglia 2004

$$x_{1,n} < -1 < x_{2,n} < \cdots < x_{n-1,n} < 1 < x_{n,n}$$

Zeros of (orthogonal) $C_{n-1}^{(\lambda+1)}$ interlace zeros of (quasi-orthogonal) $C_n^{(\lambda)}$

Are zeros of (quasi-orthog) $C_{n-1}^{(\lambda)}$ and (quasi-orthog) $C_n^{(\lambda)}$ interlacing?

D-Muldoon 2016 Use mixed 3 term recurrence relations and BDR interlacing results

D-Muldoon 2016 Use mixed 3 term recurrence relations and BDR interlacing results

$$x_{1,n-1} < x_{1,n} < -1 < x_{2,n} < x_{2,n-1} < \dots$$

D-Muldoon 2016 Use mixed 3 term recurrence relations and BDR interlacing results

$$x_{1,n-1} < x_{1,n} < -1 < x_{2,n} < x_{2,n-1} < \dots$$

Zeros of $C_{n-1}^{(\lambda)}$ and $C_n^{(\lambda)}$ not interlacing for any $n \in \mathbb{N}, n \geq 2$

Sequence $\{C_n^{(\lambda)}\}_{n=0}^{\infty}$ not orthogonal w.r.t. any positive measure

D-Muldoon 2016 Use mixed 3 term recurrence relations and BDR interlacing results

$$x_{1,n-1} < x_{1,n} < -1 < x_{2,n} < x_{2,n-1} < \dots$$

Zeros of $C_{n-1}^{(\lambda)}$ and $C_n^{(\lambda)}$ not interlacing for any $n \in \mathbb{N}, n \geq 2$

Sequence $\{C_n^{(\lambda)}\}_{n=0}^{\infty}$ not orthogonal w.r.t. any positive measure

Zeros of $C_n^{(\lambda)}(x)$ interlace zeros of $(1-x^2)C_{n-1}^{(\lambda)}(x)$

Complex Orthogonality of $\{C_n^{(\lambda)}\}_{n=0}^{\infty}, \ \lambda < -n$

Complex Orthogonality of $\{C_n^{(\lambda)}\}_{n=0}^{\infty}, \ \lambda < -n$

Richard Askey 1987 Complex orthogonality of Jacobi polynomials

Complex Orthogonality of $\{C_n^{(\lambda)}\}_{n=0}^{\infty}, \lambda < -n\}$

Richard Askey 1987 Complex orthogonality of Jacobi polynomials

$$\int_{-\infty}^{\infty} C_n^{(\lambda)}(ix) C_m^{(\lambda)}(ix) (1+x^2)^{\lambda-1/2} dx = 0, m \neq n; m+n+2\lambda < 0,$$

Complex Orthogonality of $\{C_n^{(\lambda)}\}_{n=0}^{\infty}, \ \lambda < -n\}$

Richard Askey 1987 Complex orthogonality of Jacobi polynomials

$$\int_{-\infty}^{\infty} C_n^{(\lambda)}(ix) C_m^{(\lambda)}(ix) (1+x^2)^{\lambda-1/2} dx = 0, m \neq n; m+n+2\lambda < 0,$$

Ismail 2005

$$\tilde{C}_n^{(\lambda)}(x) := (-i)^n C_n^{(\lambda)}(ix)$$

Complex Orthogonality of $\{C_n^{(\lambda)}\}_{n=0}^{\infty}, \ \lambda < -n$

Richard Askey 1987 Complex orthogonality of Jacobi polynomials

$$\int_{-\infty}^{\infty} C_n^{(\lambda)}(ix) C_m^{(\lambda)}(ix) (1+x^2)^{\lambda-1/2} dx = 0, m \neq n; m+n+2\lambda < 0,$$

Ismail 2005

$$\tilde{C}_n^{(\lambda)}(x) := (-i)^n C_n^{(\lambda)}(ix)$$

$$\int_{-\infty}^{\infty} \tilde{C}_n^{(\lambda)}(x) \tilde{C}_m^{(\lambda)}(x) (1+x^2)^{\lambda-1/2} dx = 0, m \neq n; m, n < -\lambda$$

$$\tilde{C}_n^{(\lambda)}(x) := (-i)^n C_n^{(\lambda)}(ix)$$

$$\tilde{C}_n^{(\lambda)}(x) := (-i)^n C_n^{(\lambda)}(ix)$$

$$\int_{-\infty}^{\infty} \tilde{C}_n^{(\lambda)}(x) \tilde{C}_m^{(\lambda)}(x) (1+x^2)^{\lambda-1/2} dx = 0, m \neq n; m, n < -\lambda$$

$$\tilde{C}_n^{(\lambda)}(x) := (-i)^n C_n^{(\lambda)}(ix)$$

$$\int_{-\infty}^{\infty} \tilde{C}_n^{(\lambda)}(x) \tilde{C}_m^{(\lambda)}(x) (1+x^2)^{\lambda-1/2} dx = 0, m \neq n; m, n < -\lambda$$

$$\lambda < -n \Leftrightarrow n < -\lambda$$

Finite sequence $\{\tilde{C}_n^{(\lambda)}\}_{n=0}^N, N = \lfloor -\lambda \rfloor$

$$\tilde{C}_n^{(\lambda)}(x) := (-i)^n C_n^{(\lambda)}(ix)$$

$$\int_{-\infty}^{\infty} \tilde{C}_n^{(\lambda)}(x) \tilde{C}_m^{(\lambda)}(x) (1+x^2)^{\lambda-1/2} dx = 0, m \neq n; m, n < -\lambda$$

$$\lambda < -n \Leftrightarrow n < -\lambda$$

Finite sequence $\{\tilde{C}_n^{(\lambda)}\}_{n=0}^N$, $N = \lfloor -\lambda \rfloor$

For $\lambda < 1 - n$, $\tilde{C}_n^{(\lambda)}$ has n real zeros (D-Duren result)

$$\tilde{C}_n^{(\lambda)}(x) := (-i)^n C_n^{(\lambda)}(ix)$$

$$\int_{-\infty}^{\infty} \tilde{C}_n^{(\lambda)}(x) \tilde{C}_m^{(\lambda)}(x) (1+x^2)^{\lambda-1/2} dx = 0, m \neq n; m, n < -\lambda$$

$$\lambda < -n \Leftrightarrow n < -\lambda$$

Finite sequence $\{\tilde{C}_n^{(\lambda)}\}_{n=0}^N$, $N = \lfloor -\lambda \rfloor$

For $\lambda < 1 - n$, $\tilde{C}_n^{(\lambda)}$ has n real zeros (D-Duren result)

D-Muldoon 2015 For $\lambda < 1-n$, zeros of $\tilde{C}_{n-1}^{(\lambda)}$ interlace zeros of $\tilde{C}_{n}^{(\lambda)}$

$$\tilde{C}_n^{(\lambda)}(x) := (-i)^n C_n^{(\lambda)}(ix)$$

If
$$\tilde{C}_n^{(\lambda)}(x) = 0$$
 then $C_n^{(\lambda)}(ix) = 0$.

$$\tilde{C}_n^{(\lambda)}(x) := (-i)^n C_n^{(\lambda)}(ix)$$

If
$$\tilde{C}_n^{(\lambda)}(x) = 0$$
 then $C_n^{(\lambda)}(ix) = 0$.

Connection between **real** zeros of $\tilde{C}_n^{(\lambda)}$ and **real** zeros of $C_n^{(\lambda')}$?

$$\tilde{C}_n^{(\lambda)}(x) := (-i)^n C_n^{(\lambda)}(ix)$$
If $\tilde{C}_n^{(\lambda)}(x) = 0$ then $C_n^{(\lambda)}(ix) = 0$.

Connection between **real** zeros of $\tilde{C}_n^{(\lambda)}$ and **real** zeros of $C_n^{(\lambda')}$?

D-Muldoon 2016 Let
$$\lambda' = \frac{1}{2} - \lambda - n$$

Let
$$\tilde{x}_{n,k}(\lambda), k = 1, ..., n$$
 be the zeros of $\tilde{C}_n^{(\lambda)}$

and
$$x_{n,k}(\lambda'), k = 1,...,n$$
 be the zeros of $C_n^{(\lambda')}$

$$\tilde{C}_n^{(\lambda)}(x) := (-i)^n C_n^{(\lambda)}(ix)$$

If
$$\tilde{C}_n^{(\lambda)}(x) = 0$$
 then $C_n^{(\lambda)}(ix) = 0$.

Connection between **real** zeros of $\tilde{C}_n^{(\lambda)}$ and **real** zeros of $C_n^{(\lambda')}$?

D-Muldoon 2016 Let
$$\lambda' = \frac{1}{2} - \lambda - n$$

Let
$$\tilde{x}_{n,k}(\lambda), k=1,...,n$$
 be the zeros of $\tilde{C}_n^{(\lambda)}$

and
$$x_{n,k}(\lambda'), k = 1,...,n$$
 be the zeros of $C_n^{(\lambda')}$

$$\tilde{x}_{nk}(\lambda) = [x_{nk}(\lambda')^{-2} - 1]^{-1/2}$$

Zeros of
$$C_n^{(\lambda')}$$
 and $\tilde{C}_n^{(\lambda)}$ $\lambda' = \frac{1}{2} - \lambda - n$

Zeros of
$$C_n^{(\lambda')}$$
 and $\tilde{C}_n^{(\lambda)}$ $\lambda' = \frac{1}{2} - \lambda - n$

$$\tilde{x}_{nk}(\lambda) = [x_{nk}(\lambda')^{-2} - 1]^{-1/2}$$

Zeros of
$$C_n^{(\lambda')}$$
 and $\tilde{C}_n^{(\lambda)}$ $\lambda' = \frac{1}{2} - \lambda - n$

$$\tilde{x}_{nk}(\lambda) = [x_{nk}(\lambda')^{-2} - 1]^{-1/2}$$

$$-3/2 < \lambda' < -1/2 \Leftrightarrow 1-n < \lambda < 2-n$$

Zeros of
$$C_n^{(\lambda')}$$
 and $\tilde{C}_n^{(\lambda)}$ $\lambda' = \frac{1}{2} - \lambda - n$

$$\tilde{x}_{nk}(\lambda) = [x_{nk}(\lambda')^{-2} - 1]^{-1/2}$$

$$-3/2 < \lambda' < -1/2 \Leftrightarrow 1-n < \lambda < 2-n$$

Two real symmetric zeros of ultra have modulus > 1

If $1 - n < \lambda < 2 - n$ two zeros of $\tilde{C}_n^{(\lambda)}$ are pure imaginary

Suppose
$$-3/2 < \lambda < -1/2$$
.

Suppose
$$-3/2 < \lambda < -1/2$$
.

Zeros of $C_n^{(\lambda)}(x)$ interlace with zeros of $(1-x^2)C_{n-1}^{(\lambda)}(x)$

Suppose
$$-3/2 < \lambda < -1/2$$
.

Zeros of
$$C_n^{(\lambda)}(x)$$
 interlace with zeros of $(1-x^2)C_{n-1}^{(\lambda)}(x)$

The factor $q(x)=1-x^2$ is the only quadratic multiplicative factor that restores interlacing between the zeros of $C_n^{(\lambda)}(x)$ and the zeros of $q(x)C_{n-1}^{(\lambda)}(x)$ for every choice of $n \in \mathbb{N}$.

Suppose
$$-3/2$$
 < λ < −1/2.

Zeros of $C_n^{(\lambda)}(x)$ interlace with zeros of $(1-x^2)C_{n-1}^{(\lambda)}(x)$

The factor $q(x)=1-x^2$ is the only quadratic multiplicative factor that restores interlacing between the zeros of $C_n^{(\lambda)}(x)$ and the zeros of $q(x)C_{n-1}^{(\lambda)}(x)$ for every choice of $n \in \mathbb{N}$.

Follows from the bounds derived in D-Muldoon 2016. The extreme zeros of $C_n^{(\lambda)}(x)$ approach ± 1 as n approaches ∞ .

Open Problem: Orthogonality measure $-n < \lambda < 1-n$

$$\lambda' > -1/2 \Leftrightarrow \lambda < 1-n$$

Open Problem: Orthogonality measure $-n < \lambda < 1-n$

$$\lambda' > -1/2 \Leftrightarrow \lambda < 1-n$$

$$\lambda' > -1/2$$
. $\{C_n^{(\lambda')}\}_{n=0}^{\infty}$ orthogonal on $(-1,1)$ $C_n^{(\lambda')}$ has n real zeros in $(-1,1)$ Zeros of $C_{n-1}^{(\lambda')}$ interlace zeros of $C_n^{(\lambda')}$ Weight function $(1-x^2)^{\lambda'-1/2}$

Open Problem: Orthogonality measure $-n < \lambda < 1-n$

$$\lambda' > -1/2 \Leftrightarrow \lambda < 1-n$$

$$\lambda' > -1/2$$
. $\{C_n^{(\lambda')}\}_{n=0}^{\infty}$ orthogonal on $(-1,1)$ $C_n^{(\lambda')}$ has n real zeros in $(-1,1)$ Zeros of $C_{n-1}^{(\lambda')}$ interlace zeros of $C_n^{(\lambda')}$ Weight function $(1-x^2)^{\lambda'-1/2}$

$$\lambda < 1 - n \Leftrightarrow n < -\lambda + 1$$
 Finite sequence $\{\tilde{C}_n^{(\lambda)}\}_{n=0}^N$, $N = \lfloor -\lambda \rfloor + 1$ $\tilde{C}_n^{(\lambda)}$ has n real zeros **Zeros of** $\tilde{C}_{n-1}^{(\lambda)}$ **interlace zeros of** $\tilde{C}_n^{(\lambda)}$

Open Problem: Orthogonality measure $-n < \lambda < 1 - n$

$$\lambda' > -1/2 \Leftrightarrow \lambda < 1 - n$$

$$\lambda' > -1/2$$
. $\{C_n^{(\lambda')}\}_{n=0}^{\infty}$ orthogonal on $(-1,1)$ $C_n^{(\lambda')}$ has n real zeros in $(-1,1)$ Zeros of $C_{n-1}^{(\lambda')}$ interlace zeros of $C_n^{(\lambda')}$ Weight function $(1-x^2)^{\lambda'-1/2}$

$$\lambda < 1 - n \Leftrightarrow n < -\lambda + 1$$
 Finite sequence $\{\tilde{C}_n^{(\lambda)}\}_{n=0}^N$, $N = \lfloor -\lambda \rfloor + 1$ $\tilde{C}_n^{(\lambda)}$ has n real zeros **Zeros of** $\tilde{C}_{n-1}^{(\lambda)}$ **interlace zeros of** $\tilde{C}_n^{(\lambda)}$

Weight function pseudo-ultras $\lambda < -n$ is $(1+x^2)^{\lambda-1/2}$

Open Problem: Weight function (measure) $-n < \lambda < 1 - n$?

Thank you