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Introduction and background
I

The N X N Toeplitz matrix associated to the symbol ¢ is defined as

$o $-1 0 PN+
) do o P-N+2
In[¢] = . . . e
¢1\}—1 ¢1\}—z e ¢-o

where ¢y ’s are the Fourier coefficients of ¢

bi = /r () =

2miz’

Let
Dn[¢] := det Tn[¢].

The large-N asymptotics of the Toeplitz determinants are well known and given by the Szego-

Widom theorem by
Dy[4] ~ Gl$1VE[#],

G[¢] = exp ([logplo) and E(§) = exp Z n[log ¢]n[log ¢]-n|.

n>1




Biorthogonal polynomials on the unit circle
I

Let Q, and @n be respectively defined by

R
) ) do o Ponn
On(z) = ————det| : - :
AT v R
Pn-1 Pn-2 - ¢-1
1 z e z"
and
$o P10 Popn 1
-~ (2) 1 d $1 $o c P-n+2 z
On(2z) = ——==det . X . s
VD[ ¢]1Dns1[4] : : - :
¢n l]snfl o ¢1 z"
n—1 n—1
On(z) = kpz" + Z KE") 2L, and On(2) = k2" + Z ft(,w 2,
=0 =0
where

o _ [Dulel
! Dn+l[¢].




Biorthogonal polynomials on the unit circle
I

Let Q, and Oy, be respectively defined by

do P -n
1 do 0 Ponn
On(2) = —— 2 det| - C -,
VDn[¢]1Dns1[4] ) ’ ) ’
¢n71 ¢n72 4571
1 z z"
and
$o P10 Pop 1
3.5 1 . 1 P 0 Pz 2
On(2) = ——=——=———=det . . : ,
O DDl |2
bn Pn-1 e o z"

[}

One can readily observe that {Q,},>, and {én};io form the bi-orthogonal system of
polynomials on the unit circle with respect to the weight ¢ :

/Qn<z)@n<z-1>¢<z>d—? “on mk=012-.
T 2miz




RHP for BOPUC

It is due to J.Baik, P.Deift and K Johansson that the following matrix-valued function
constructed out of the polynomials Q, and Q,

. L0 $Od
X(zn) e o /T(g-z> 2l
z;n) = ~ B ,
D () o, [ QD O

(-2 2l
satisfies the following Riemann-Hilbert problem for the BOPUC, which in the subsequent
parts of this text will occasionally be referred to as the X-RHP:

> RH-X1 X :C\ T — C?*? is analytic,

> RH-X2 The limits of X({) as { tends to z € T from the inside and outside of the unit
circle exist, and are denoted X (z) respectively and are related by

Xi(2) = X_(2) ((1) z‘"(f(z)), z€T,

> RH-X3 As z — o0

z

X(2) = (1+0(z)) (:0" 9,1)-




The

two-dimensional Ising model

Let us first recall the two-dimensional Ising model, solved by Onsager. In this model a 2M x 2N
rectangular lattice is considered with an associated spin variable oj; taking the values 1 and
—1 at each vertex (j, k), -M < j <M -1, =N < k < N — 1. There are 24MN possible spin
configurations {c} of the lattice (a configuration corresponds to values of all oy fixed). By J,
and J, we respectively denote the horizontal and vertical nearest neighbor coupling constants
and with each configuration we associate its nearest-neighbor coupling energy given by

M-1 N-1

E({c}) =~ Z Z (Tn0y k0 k1 + Tv0kOj1k) 5 Fn, Jv > 0.

M k=N
The probability of a spin configuration {o} is given by

o1 [ EUe))
=70 P\ TheT )

where kg is the Boltzmann’s constant and Z(T) denotes the partition function and is naturally

defined as v
Z(T):Zexp(— (kic;}))
{o}




The two-dimensional Ising model
I

The spin-spin correlation function between the vertices (m’, n’) and (m, n) is defined as the
following thermodynamic limit

‘ 1 E({o})
' W Omn) = 1 e m’',n’ Om,n - .
(Om’ 1/ Omn) val\friOO Z(T) {Zo;o 7 Om, exP( ksT

The quantity , hm (00,00mn) is referred to as the long-range order in the lattice at a
m +n —00

temperature T. Indeed, the spontaneous magnetization M is defined as square of the large-n
limit of diagonal correlations
M := [lim (opponn).
n—oo
Let us introduce the notations,

S;,—smh(i) Sv:sinh(zjv) R

kgT kgT
Ch—cosh( 7h) CV:cosh(iBjVT) )

and
k = SyS,.




The two-dimensional Ising model
I

It is famously known that, unlike the one-dimensional case, the two-dimensional Ising model
exhibits a phase transition in the spontaneous magnetization at some temperature T,

characterized by
k=1.

In this talk I will focus on
k>1,

which corresponds to the low temperature regime T < T,.

For the diagonal correlations {ogoon,nN) and the horizontal correlations (o 90oo N ), one has
Toeplitz determinant representations. Indeed, for the diagonal correlations we have

_ _ g p—
{o000NN) =Dn[& ], $(2) = \/%

and for the horizontal correlations

(1-a12)(1 — azz71)
11—z )(1 - azz)’

(o0000N) = Dn([77 ], 1(z) = \/

where a; and a; are given by

]h,v
kgT®

_zp(1-2zy) 11—z _
a=—" =—"-:° zpy = tanh
1+zy zp(1+ zy) ’




The two-dimensional Ising model
I

In the low temperature regime, the symbols (5 and 77 enjoy the regularity properties required by
the strong Szeg6 limit theorem and the diagonal and horizontal long-range orders

Mp == [ lim {(ooponnN) and My := _[lim (coo00N),
N—ooo N—oo

both evaluate to
(1-k2)1e.

In an interesting development, It was shown by Au-Yang and Perk in 1987 that the next-to-
diagonal two point correlation function is given by the following bordered Toeplitz determinant,

(ongon-18) = DY 1. 91,
where $ is the symbol for diagonal correlations, and

~ Cvza(z) +Cy
Y(z) = S-a)

s with e = ——




The two-dimensional Ising model
I

In an interesting development, It was shown by Au-Yang and Perk in 1987 that the next-to-
diagonal two point correlation function is given by the following bordered Toeplitz determinant,

(Go00n-1n) = DB, Y1,

where (}5\ is the symbol for diagonal correlations, and

-~ Cuzg(2) + Gy ) Sk
= —_— th e = ——=.
Y(z) S z-o) wil c 5,
The bordered Toeplitz determinant, Dg [¢; ], is defined as
$o $1 0 PNz YN

$-1 do 0 PN-3  UN-2
D[ y] = det| S Sl N>
$2-N  P3-N - $o 12}
$1-N 2N - P Yo




A general result
I

Theorem 1. Let Dﬁ [¢; ¥] be the bordered Toeplitz determinant with ¢ = g1¢ + g2, where

by n bjz m b]
q1(2)2a0+alz+—+z — and qz(z)_ao+alz+—+z —
z j=1 z 7 = z Cj

and ¢ of Szegb type. Then, as N — oo

D8 16,91 = GIHIVE] (FIgs 1+ 0(p™)),
where

Glg] = exp ([log¢lo) and E($) = exp (Zn[log¢]n[log¢]n),

nx1

Fl$; 9] = ap + bo[log $]1 + g b; Z((;j)) a(lo) ap — ar[logpl-1 — E éa(cj) ,
Jj=1 =1
0<|cj-\<1 ‘Cj‘>1

1 (I,
P 2mi / T—2z ]

a(z) :=ex




Ising next-to-diagonal correlations 10
I

Theorem 2. Let (0 9on-1,n) be the next-to-diagonal two point correlation function in the
Ising model. Then, in the low-temperature regime, the long-range order in the next-to-diagonal
direction for the anisotropic square lattice Ising model is the same as of the diagonal and
horizontal ones, i.e. is described as follows

I&im (o000N-1n) = (1 - k)14,

Theorem 3. The next-to-diagonal two point correlation function has, in the low-temperature
regime k > 1, the N — oo asymptotics

_ 1 1 1 o -
(on0on-1N) = (1= k2 (1+ = (g + g NN 1+ 0N l)))

For comparison, asymptotics of the diagonal correlation function is given by

(G000oNN) = (1— k214

1 g oN _
(1+m1\1 22 (1+o(N 1))),

as N — oo.




A more general result 1
I

Theorem 4. Suppose that /(z) admits an analytic continuation in some neighborhood of the
unit circle and let ¢ be of Szeg6 type. Then

DY 4,91 = GIIVE] (Flgsp] + O(e M),
where

Glg] =exp ([logglo) and E(¢) =exp (Z n[log¢]n[log¢]-n),

nx1
and F[¢; ¢/] is given by
[Ot_lﬁ]() 1 dw

«(0) EW Ta—(W)W(W)

Fl¢:¥] =

2iw’

and ¢ is some positive constant.




BOPUC RHP and Bordered Toeplitz determinants

The bordered Toeplitz determinants DnJrl [¢ ] and DB il [¢ ¢ ] are encoded into
X-RHP data described by

o, le] <1,
T e IDap1Xu (G n), el > 1,

and

D5alg L1 = -0 g1+ IDMGIK(en). %0,

4
Db lgsz 91 = 20 x|
z=0
N on (n)
DE,,[$,2] = Dal$] lim (M) = Dal$1 2=,
(n)
Xu(zn) — 2" - %Z"_l (")2
DE,,[$,2*] = Da[$] lim o | = Dalp)

and so on. Note that
DB 14.2F1=0,  kezZ\{01---n}.




Multi-bordered, semi-framed, and multi-framed Toeplitz determinants
I

d’O ¢l e ¢n7m71 wl,nfl ¢2,n71 o l//m.nfl
DB[¢ ] d ¢—1 ¢0 e ¢n—m—2 lf//l,n—Z ¢2,n—2 e l//m,n—z
P, ] = det . . . . . . N
$omt bomz - bom Va0 Va0 o Ymo

For example, here you see the determinant 5’7',,(3) [45, £3, P35, 113, V3s a1 2] with colored entries for
easier interpretation:

ay &n-3  &n-a  &n-s Ens - &2 & & ao
Y3.n-3 as En-s  En-e  Eon-7 v &1 &0 as V3.0
Y3n-4  Y2n-5 a -7 &in-s - &0 az V2.0 P31
Y3n-5  Yan—6  Yin-7 o b1 0 Pomr Yo 2%} V3.2
Y3n-6  ¥Y2n-7  Y1,n-8 <]51 ¢0 T ¢—n+8 lﬁl,l ¢2,2 1/13,3
det| . . . . . . . . .
Y32 Y21 Y10 Pn-7  Pu-s - ®o Yin-7  Yon-6  V3n-s
¥3.1 Y2,0 ay Nn-7  Nin-8 - 11,0 a3 VYon-5  V3n-4a
Y30 asg M2,n—5  M2pn-6  MN2n-7 - 2,1 12,0 ar V3.n-3

a2 n3,n-3  M3n-4 MN3n-5 T3n-6 13,2 13,1 13,0 ar

13




Strong Szegé theorem for two-bordered Toeplitz determinants 14
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Theorem
Fort=1,2, let Y, (z) = qlf) (2)p(z) + q([) (z) where

) “ p&  me b(é’) (r) m b(l)

(¢ _ (¢ (€) 0 (£) _

q, ' (2) =ay +a; ' z+ . + o and q,’ (z) = a +a )2+ +Z (()
j=1 % Cj j=1 2 —

and suppose that ¢ is of Szeg6-type. Then,
D¢ w21 = Dy s Y, ¥zl = GMIIE[S] {Ti[4, ¥, Y] + O(p™ ™)},

Fl¢,y2]  Flg,y1]

Nl$. ¥yl = 'H[¢, V.1 Hl$ 1|

in which F[¢, /] is given by (9), and

m

b;
Higl=a - Y. 2 +allogpls + bollog 1z + - [log 61
=1

j=1 J
>1 0<[¢jl<1

<

1 m b- m b;
+ — Glo] jZ: c—éa(cj)+ Z :j_a(cj) .
lgl>




Dodgson Condensation Identity 15

—
Let
D¢ 9] = 2,
where
o b1 o Py Y1 Yane
$-1 $o o Pna Yin-2 Yon—2
D¢ ] = det| : S : :
G-n+3  Ponsa - o Y2 Vo2
Gonrz  P-mz 0 P Y11 Y21
Pne1 Pom2 - [ Y10 Vo0

Consider the following Dodgson condensation identity:

T o BT FET o BET R I




Riemann-Hilbert problem with nonzero winding number symbol 16

Let us recall
> RH-X1 X(+;n) : C\'T — C?*? is analytic,

> RH-X2 The limits of X({; n) as { tends to z € T from the inside and outside of the
unit circle exist, and are denoted X (z; n) respectively and are related by

Xi(z;n) = X_(z;n) ((1] z‘"iﬁ(z)), z€eT,

> RH-X3 As z — oo

Xi(n) | Xa(n)

X(z;n) =1+ 5
z z

+ 0(23)) Z"%3,

By Z(z; n) we refer to the solution of the X-RHP when ¢ is replaced by z¢:
> RH-Z1 Z(+;n) : C\'T — C¥? is analytic,

> RH-Z2 The limits of Z({; n) as { tends to z € T from the inside and outside of the
unit circle exist, and are denoted Z, (z; n) respectively and are related by

-n
Z(zn) = Z_(zn) ((1) z zlqﬁ(z)), z€T,
> RH-Z3 Asz —

Z(zn) = (I+ O(z_l))z”a3.




Riemann-Hilbert problem with nonzero winding number symbol

17
I

Theorem
The solution Z(z; n) to the Riemann-Hilbert problem RH-Z1 through RH-Z3 can be expressed in

terms of the data extracted from the solution X (z; n) of the Riemann-Hilbert problem RH-X1
through RH-X3 as

X1,12(n) X21(0; n)

- —X1,12(n)
Z(z;n) = X (0sm) 7t (1 O) X(z;n) (1 0),
0 0 0 =z
_ X21(0; 1) 1
Xi11(0;n)
or
) X -1 oo
2+ X122(n—1) - % ~X112(n=1)
Z(z;n) = ) Xi12(n—1) X(z;n—1).
0

X112(n=1)




semi-framed Toeplitz determinants

I ¢0 ‘]5—1 e ¢—n+2 l?n—z
¢1 ¢0 e ¢—n+3 lpn—3
Enlp:y.msa] = det| : : :
$n-2  Pn-3 - $o Yo
Nn-2 Nn-3 e Ho a
o Y Mt S
$1 ¢ 0 Pz
Gulo; ¥, n; al = det )
¢n72 ¢n73 T ¢0 lr//nfz
o m T Nn-2 a
$o -1 e o
$1 L B S
Il ;Y. m; al == det R
¢n72 ¢n73 e ¢0 wn—z
Hn-2 Nn-3 e o a
%o -1 Pz Yn2
#1 $o o Pones Un-s
Znlg: ¥, m; a] i=det| : : :
Pn-2  Pn-3 - $o o

o m T Mn-2 a




semi-framed Toeplitz determinants 19

—
N-2 N-1 N-2 N-1
M - M =M - M
EBR ] MR B e R
semi-framed — T T
pure Toeplitz semi-framed pure Toeplitz
N-2 N-1
LR A
—— ——
bordered Toeplitz bordered Toeplitz
Theorem

The reproducing kernel K, (z1, z2) = }120 Qj(zz)éj(zl) has the following semi-framed Toeplitz
determinant representation

¢ P 0 Pn 1

$1 $o e fn oz

1 . . . . .
Kn(21,22)=a—mdet : : - : :
¢n Pn-1 - (}3(") Z;’

1 Z z a

2




semi-framed Toeplitz determinants and the reproducing kernel of the BOPUCz2o

Theorem

The semi-framed Toeplitz determinants &, p; ¥, n1; al, Enl s ¥, n; al, Znl¢p; ¥, n; a] and
Znl$; ¥, n; a] can be represented in terms of the reproducing kernel of the system of bi-orthogonal
polynomials on the unit circle associated with ¢ given by

Kn(z1,22) = ), Qj(22) Q(=1),
J=0

of the system of bi-orthogonal polynomials on the unit circle associated with the symbol ¢, as

Eni2 [9; V.15 al
Dui[¢]
gn+2 [¢ l// n;a
Dui[¢]
%n+2 [¢ 1# n;a
Dpi[¢]
gn+2 [¢ 1# n;a
Duii[¢]

where D[] is given by (2).

)

-
-
),

_ dz
/Kn<zl,zZ>z2 " (z2) S
T

-1 -1

/Kn<z1 () 5
T
/Kn(zfl,lz)lz_nﬂ(zz)z
T

_ dz;
/Kn(zl,zzl)n(zz)z 2
T JT1Z)

le
2iz;’

] Zl_"lﬁ(ll)

}Iﬁ( 1)

Zmz
le
2mizy’
le
thill ?

}Iﬁ( 1)

] Zf"‘ﬁ(ll)




Christoffel-Darboux identity and the Riemann-Hilbert characterization 21
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Corollary

The semi-framed Toeplitz determinants #pia [P; Y, n; al, Enaz [P ¥, 15 al, Enia [Ps ¥, m; a), and
L2 [ @3 ¥, 175 a] are encoded into the X-RHP data as

Tz [pi.m3a] _ // "2 " (z2) Y (21) et(Xn(zz;rHl) le(Zz;n+2)) dzy dz
Xii(zi;n+1)  Xa1(zi3n+2)

n+1[¢] z1— 22 27izy 2mizy
En+2 [¢ l// '7; _ // Zz_nr/(ZZ)I//(Zl) det Xi1(z;n+1)  Xo1(za;n+2) dzy dz
Dni1[¢ 71— 2 Xi(zisn+1)  Xo1(zi;n+2)) 2mizp 27iz;”
Gni2 [¢:Y. 13 a] lﬁ 1n;a // 2 M (22) Y (21) Xi1(zz;n+1)  Xo1(zosn+2)\ dzz  dz
det - —,
Dut1[¢] 21— 2 Xi(zi;n+1)  Xp1(z1;n+2)) 2mizy 27izg
L2 [$5Y.m3a] _ // U(Zz)lﬁ(zl) det [Xn1(zzn+ 1) Xor(z23n+2) dz; dz
Dni1[9] 71— 2 Xu(zisn+1)  Xo1(zi;n+2)) 2mizy 2mizy”

where D, [¢] is given by (2), and X171 and Xa; are respectively the 11 and 21 entries of the solution
to RH-X1 through RH-X3.




Strong Szegé theorem for semi-framed Toeplitz determinants
I

Theorem
Let ¢ be a Szegé-type symbol, and ¢ and d be complex numbers that do not lie on the unit circle.
Then, the following Strong Szeg6 asymptotics hold for %, £, & and & :

my B¢
m[qszz_djzl
Bi$
e

=G"[¢]E[¢] (a+O(p™")).

G"[$]E[¢] (a+O(p™")) -

my
B [qs; =
=

my my

%nﬂ

my Bi
szck

v = a(d D)
\Jl <1 |egl<1

J=1 k= “(CJZI) 1
djl<1 Iﬂk\<1

= G"[¢1E[¢p]|a+ Z Z ; (k) 1_10kdj+0(p_")4

d:
- igEpl|ar S Z “d) g o |



Strong Szegé theorem for semi-framed Toeplitz determinants
I

Theorem
Let ¢ be of Szeg6-type, and ¢ and d be complex numbers that do not lie on the unit circle. Then, the
following Strong Szegé asymptotics hold for #, %, & and &:

b ¢-§] = i B ol = M1 (a+ O(p™™))
n+l ,j:l Z_dj’k:l Z—Ck’ - P .
oA my B
Dot |$ ) = > —Esa| = G"[$IE[$] (a+ O(p™)) .
= z-di L z-q
G A A B & A a(cr) 1
Enet | s R sa| = G"[P1E[$]] a+ AB—= . —— 4 0(p™™|.
" ;z—dj;z—ck Z l; a1~ ad;
[dj|>1 le>1

g, qﬁ'i 4 i B .,
n+1 5 Z—dj, Z—Ck’

Jj=1 k=1

G"[$1E[$] mf mf A 2D L o
= a+ iDj — — +U(p .
=1 k=1 ! (X(Ckl) 1- dej
|dj|>1 legl>1




Applications: Non-intersecting paths and statistical mechanics 24
I

Consider n simple random walks on Z which begin at the points x; < x, < - -+ < x,, and end at
the points y; < y» < - -+ < yp after a fixed time T € 2N. If a few of the starting/ending points
are not equally spaced, then we get a bordered or framed Toeplitz determinant. For example if

xj=jforj=1,...,n, yr=kforj=1,2,...,n~ m,and yr > n— mare arbitrary for
k=n-m+1,...,n, we get the bordered Toeplitz determinant
B, o
D, [¢; l/’m]’
where

Ye(Q) = p(§)g™Wnmemm,

Ifxj = y;j=jforj=1,2,---,n~ 1and x, and y, are both arbitrary then we get the framed
Toeplitz matrix

¢0 ¢l e ¢n—2 lﬁn—l
$-1 o 0 Pu-3 Yn—
de| oo
¢2—n ¢3—n e ¢0 Ir//l
M-n  Mo-n 0 -1 Pyxy

where

Y() =) Q) = ¢




Thank you!




Determinants of block matrices
I

det (mqs] B,

) = D[] det (a - CaT,! [¢]Bn)

26
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