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Motivation



Improving History

▶ Area of particular interest since the work of Littman and Strichartz in the

early 70s.

Operators, and families of operators can improve upon the p-norm by achieving

bounds over larger p-values.

Example

If p ∈ (1, 2) then the dual index p′ =
p

p − 1
∈ (2,∞), so an inequality of the form

∥Tf ∥ℓp′ (Z) ≤ ∥T∥ ∥f ∥ℓp(Z)

is an improving inequality for a bounded linear operator T.
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Maximal History

▶ Hardy and Littlewood Maximal function for studying cricket averages:

Mf (x) = sup
r>0

1

|B(x , r)|

∫
B(x,r)

|f (y)| dy ,

where B(x , r) =
{
y ∈ Rd : |x − y | < r

}
, and |E | denotes the d-dimensional

Lebesgue measure of a set E ⊆ Rd .
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The Hardy-Littlewood Maximal Inequality

Theorem (Weak type estimate)

For d ≥ 1, there is a constant Cd > 0 such that for all λ > 0 and f ∈ L1(Rd), we

have:

|{Mf > λ}| ≤ Cd

λ
∥f ∥L1(Rd )

Theorem (Strong type estimate)

For d ≥ 1, and p ∈ (1,∞], there is a constant Cp,d > 0 such that for all

f ∈ Lp(Rd), we have:

∥Mf ∥Lp(Rd ) ≤ Cp,d∥f ∥Lp(Rd )

E. M. Stein showed proved that Cp,d = Cp.
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Other maximal functions in Rd

Let σ be the normalized, rotation invariant measure on Sd−1.

Full Spherical Maximal Function: Mfullf (x) := sup
j∈Z

∫
Sd−1

f (x − jy) dσ(y).

Mfull is satisfies p bounds for a certain range of p that depends on dimension

(Lacey, 2017)

Lacunary Spherical Maximal Function:

Mlacf (x) := sup
j∈Z

∫
Sd−1

f (x − 2jy) dσ(y).

Mlac is satisfies p bounds for a certain range of p that depends on dimension

(different than the one above!). (Lacey, 2017)
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Other maximal functions

Maximal operators can be defined for discrete functions f defined on the integers.

(two-sided sequences)

Fefferman, C., and E. M. Stein. “Some Maximal Inequalities.”

American Journal of Mathematics, vol. 93, no. 1, 1971, pp. 107–15. JSTOR,

https://doi.org/10.2307/2373450.

A very interesting question is to prove maximal inequalities for

various families of averaging operators, both in the continuous and

the discrete setting!

Q: How can we achieve that?
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Sparse families

Let D =
⋃
k∈Z

Dk be a dyadic lattice collection that partitions Rd into cubes of

side-length 2k and each Q ∈ Dk belongs to exactly one cube R ∈ Dk+1.

Definition

A family of cubes S in Rd is called 1/2-sparse if for any Q ∈ S we have∣∣∣∣∣∣∣∣
⋃

Q′∈S,
Q′⊊Q

Q ′

∣∣∣∣∣∣∣∣ ≤
1

2
|Q|.

Such a Q ′ is called a child of Q.
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Visualization

Parent

Q0

Children

1st generation

2nd generation

3rd generation
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Exceptional sets

For every cube Q ∈ S, the exceptional set of Q is

EQ := Q \
⋃

Q′∈S,
Q′ is a child of Q

Q ′.

Properties
1 Exceptional sets are disjoint.

2 They cover Q, meaning that ∀Q ∈ S, Q =
⋃

Q′∈S
Q′⊆Q

EQ′ .

3 They make up a large portion of Q:
1

2
|Q| ≤ |EQ | ≤ |Q|.
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Sparse Forms

Given a sparse collection S, and for 1 ≤ r , s < ∞, an (r,s)-sparse form is

Λr ,s(f , g) =
∑
Q∈S

|Q|⟨f ⟩Q,r ⟨g⟩Q,s

where

⟨f ⟩Q,r =

(
1

|Q|

∫
Q

|f |r
)1/r

.

When r = 1 it is often ommitted.
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Why sparse bounds?

Suppose we have an operator T that is dominated by a sparse form:

|⟨Tf , g⟩| ≲
∑
Q∈S

|Q| ⟨f ⟩Q⟨g⟩Q
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Sparse implies Lp

So sparse domination implies Lp boundedness for the operator!

More generally,

Theorem

If an operator T is dominated by an (r , s) sparse form, then it is bounded

T : Lp(w) → Lp(w), for all weights w ∈ Ap and p ∈ (r , s ′).

where Ap is the Muckenhaupt weight class.
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Muckenhaupt Weights

▶ Intuitively, a (positive) weight w is said to be in the p-class of Muckenhaupt

weights if the Hardy-Littlewood Maximal Function is bounded in the respective

weighted Lp space.

▶ Practically, the p class of Muckenhaupt weights contains all weights for which

w and w−1 oscillate in a quantifiably controlled manner. Specifically:

sup
B: balls

(
1

|B|

∫
B

∣∣w(x)
∣∣ dx)( 1

|B|

∫
B

1∣∣w(x)
∣∣ p−1

dx

) 1
p−1

< ∞
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Techniques



The circle method

The initial idea was attributed to G.H. Hardy (1877-1947) and S. Ramanujan

(1887-1920) when studying the asymptotics of the partition function.

It was taken up by numerous other researchers, used in hundreds of papers,

and still yields results up until this day.

Main Idea
Heuristically, when looking at the 1-dimensional torus, we can split it into two

pieces called major and minor arcs, and study their contributions separately.

Major arcs contain ‘almost’ rationals whose denominators we can control.

Everything else gets thrown in the minor arcs.

We can generalize this idea in higher dimensions!
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Formal Definition

Let 0 < ε ≪ 1/4. For each s ≥ 1 set

Rs :=

{
A

Q
∈ T : (A,Q) = 1, 2s−1 ≤ Q < 2s

}

For s < jε define the j-th major box at A/Q as

Mj(A/Q) :=
{
a ∈ T : |a− A/Q| ≤ 2j(ε−1)

}

The boxes are disjoint for ε small enough.
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Major and Minor arcs

width = 2 · 2(ε−1)j
{

A
Q

A′

Q

We define the j-th major arc as

Mj :=
⋃

A
Q ∈Rs

Mj(A/Q)

Minor arcs are the complements

of major arcs.
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Fourier Truncation

Q: How do we utilize this in our results?

Bourgain’s High Low Fourier Truncation Method

J. Bourgain, “New global well-posedness results for non-linear Schrödinger

equations”, AMS Publications (1999).

Idea: Suppose we want to estimate an inner product. One way is to use Hölder:

|⟨f , g⟩| ≤ ∥f ∥p ∥g∥p′ .

We break f = H + L. That allows us to apply Hölder twice, using different dual

indices in each part:

|⟨f , g⟩| = |⟨H + L, g⟩| ≤ ∥H∥p ∥g∥p′ + ∥L∥q ∥g∥q′ .
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Example from Research

Let d(n) be the usual divisor function, and define their sum D(N) =
∑
n≤N

d(n).

Now consider the normalized averaging operator

KN f =
1

D(N)

∑
n≤N

d(n) f (x + n)

and the associated maximal function

K∗f = sup
N

|KN f |.

Christina Giannitsi (Vanderbilt) Intro to sparse domination 10/12/24 19 / 26



Results

Theorem (C.G.)

For p ∈ (1, 2), there exists Cp > 0 such that for all positive integers N and

functions f supported on an interval E of length N, ⟨KN f ⟩E ,p′ ≤ Cp⟨f ⟩E ,p.

Theorem (C.G.)

For r , s ∈ (1, 2), there exists C > 0 such that for all compactly supported

functions f and g , there exists a sparse collection S so that

|(K∗f , g)| ≤ C
∑
I∈S

|I |⟨f ⟩2I ,r ⟨g⟩I ,s .

Corollary

For any p ∈ (1,∞) and all weights w in the Muckenhoupt class Ap, the maximal

operator K∗ : ℓp(w) → ℓp(w) is a bounded operator.
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Decomposition

Operator

Low Pass Term

approximation

on major arcs

for small Q

High Pass Term

major arcs

for large Q
minor arcs

error of

approximation
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Other Operators

1 Ad
N f (x) =

1

DN

∑
n<N

d(n) f (x − n)

2 A□
N f (x) =

1

N

∑
n<N

d(n) f (x − n2)

3 AP
N f (x) =

1

N

∑
n<N, n: prime

log(n) f (x − n)

4 APr
N f (x) =

1

N

∑
n<N, n: prime
n≡b mod y

log(n) f (x − n)

5 K d
N f (x) =

1

D̃N

∑
|n|2<N

dZ[i ](n) f (x − n)

6 KP
N f (x) =

1

N

∑
|n|2<N
n: prime

log |n| f (x − n)
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Application

Let’s examine the operator

KN f (x) =
1

N

∑
N (n)<N

ΛC(n) f (x − n)

when f (x) = ΛC(x).

When is KNΛC(x) ̸= 0?

n : prime

x − n : prime
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Example

iR

R

N

n1

p1q1

ω1

n2

r2

p2q2

ω2

ω1 =
[

48
360 ,

51
360

]
n1 = 47 + 39i = p1 + q1p1 = 24 + 19i

q1 = 23 + 20i

ω2 =
[

17
360 ,

24
360

]
n2 = 76+29i = p2+q2+ r2

p2 = 28 + 13i

q2 = 29 + 10i

r2 = 19 + 6i
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Generally

iR

R

ω

Nω

n

p1

p2

p3

Pick an arbitrary sector ω.

Find a radius Nω large

enough.

Pick n odd, such that

N (n) > Nω.

Write it as a sum of three

primes p1, p2, p3 in the

sector, meaning

arg(pi ) ∈ 2πω, i = 1, 2, 3.
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The end!

Thank you!

Questions?
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Let F ,G ⊆ [0, 1] and g(x) = x−1/4
1[0,1]. Then ⟨1F ⋆ g ,1G ⟩ ≲

(
|F | |G |

)7/8
.
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