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Notation

I Sn−1: unit sphere in Rn

I Spherical Code: A finite set C ⊂ Sn−1 with cardinality |C |
I Interaction potential h : [−1, 1]→ R ∪ {+∞} (low.

semicont.)

I The h-energy of a spherical code C :

E (n,C ; h) :=
∑

x ,y∈C ,y 6=x

h(〈x , y〉),

where t = 〈x , y〉 denotes Euclidean inner product of x and y .

I Riesz s-potential: h(t) = (2− 2t)−s/2 = |x − y |−s

I Log potential: h(t) = − log(2− 2t) = − log |x − y |
I ‘Kissing’ potential:

h(t) =

{
0, −1 ≤ t ≤ 1/2

∞, 1/2 ≤ t ≤ 1



Problem
Determine

E(n,N; h) := min{E (n,C ; h) : |C | = N,C ⊂ Sn−1}

and find (prove) configuration that achieves minimal h-energy.

I Code fishing.

I Even if one ‘knows’ an optimal code, it is usually difficult to
prove optimality–need lower bounds on E(n,N; h).

I Delsarte-Yudin linear programming bounds: Find a potential f
such that h ≥ f for which we can obtain lower bounds for the
minimal f -energy E(n,N; f ).

I Discuss optimal codes for N = 2, 3, 4, and 5 points on S2.



Optimal five point log and Riesz s-energy code on S2

(a) (b) (c)

Figure : ‘Optimal’ 5-point configurations on S2: (a) bipyramid BP, (b)
optimal square-base pyramid SBP (s = 1) , (c) optimal square-base
pyramid SBP (s = 16).
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logarithmic energy on the sphere, Pacific J. Math. 207
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Problem, Exp. Math. 22 (2013), 157–186.
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Example: A = S2; N = 174; s=1

Red=pentagon, Green=hexagon, Blue=heptagon



Example: A = S2; N = 174; s=0

Red=pentagon, Green=hexagon, Blue=heptagon



Example: A = S2; N = 1600; s=4
Red=pentagon, Green=hexagon, Blue=heptagon



Example: A = S2; N = 1600; s=0
Red=pentagon, Green=hexagon, Blue=heptagon



Spherical Harmonics

I Harm(k): homogeneous harmonic polynomials in n variables
of degree k restricted to Sn−1 with

rk := dim Harm(k) =

(
k + n − 3

n − 2

)(
2k + n − 2

k

)
.

I Spherical harmonics (degree k): {Ykj(x) : j = 1, 2, . . . , rk}
orthonormal basis of Harm(k) with respect to integration
using (n − 1)-dimensional surface area measure on Sn−1.



Gegenbauer polynomials

I Gegenbauer polynomials: For fixed dimension n, {P(n)
k (t)}∞k=0

is family of orthogonal polynomials with respect to the weight

(1− t2)(n−3)/2 on [−1, 1] normalized so that P
(n)
k (1) = 1.

I The Gegenbauer polynomials and spherical harmonics are
related through the well-known Addition Formula:

1

rk

rk∑
j=1

Ykj(x)Ykj(y) = P
(n)
k (t), t = 〈x , y〉, x , y ∈ Sn−1.

I Consequence: If C is a spherical code of N points on Sn−1,

∑
x ,y∈C

P
(n)
k (〈x , y〉) =

1

rk

rk∑
j=1

∑
x∈C

∑
y∈C

Ykj(x)Ykj(y)

=
1

rk

rk∑
j=1

(∑
x∈C

Ykj(x)

)2

≥ 0.



‘Good’ potentials for lower bounds

Suppose f : [−1, 1]→ R is of the form

f (t) =
∞∑
k=0

fkP
(n)
k (t), fk ≥ 0 for all k ≥ 1. (1)

f (1) =
∑∞

k=0 fk <∞ =⇒ convergence is absolute and uniform.

Then:

E (n,C ; f ) =
∑

x ,y∈C
f (〈x , y〉)− f (1)N

=
∞∑
k=0

fk
∑

x ,y∈C
P

(n)
k (〈x , y〉)− f (1)N

≥ f0N
2 − f (1)N = N2

(
f0 −

f (1)

N

)
.



Thm (Delsarte-Yudin LP Bound)

Suppose f is of the form (1) and that h(t) ≥ f (t) for all
t ∈ [−1, 1]. Then

E(n,N; h) ≥ N2(f0 − f (1)/N). (2)

An N-point spherical code C satisfies
E (n,C ; h) = N2(f0 − f (1)/N) if and only if both of the following
hold:

(a) f (t) = h(t) for all t ∈ {〈x , y〉 : x 6= y , x , y ∈ C}.
(b) for all k ≥ 1, either fk = 0 or

∑
x ,y∈C P

(n)
k (〈x , y〉) = 0.
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The k-th moment Mk(C ) :=
∑

x ,y∈C P
(n)
k (〈x , y〉) = 0 if and only

if
∑

x∈C Y (x) = 0 for all Y ∈ Harm(k). If Mk(C ) = 0 for
1 ≤ k ≤ τ , then C is called a spherical τ -design and∫

Sn−1

p(y) dσn(y) =
1

N

∑
x∈C

p(x), ∀ polys p of deg at most τ .



Thm (Delsarte-Yudin LP Bound)

Suppose f is of the form (1) and that h(t) ≥ f (t) for all
t ∈ [−1, 1]. Then

E(n,N; h) ≥ N2(f0 − f (1)/N). (2)

An N-point spherical code C satisfies
E (n,C ; h) = N2(f0 − f (1)/N) if and only if both of the following
hold:

(a) f (t) = h(t) for all t ∈ {〈x , y〉 : x 6= y , x , y ∈ C}.
(b) for all k ≥ 1, either fk = 0 or

∑
x ,y∈C P

(n)
k (〈x , y〉) = 0.

Maximizing the lower bound (2) can be written as maximizing the
objective function

F (f0, f1, . . .) := N

(
f0(N − 1)−

∞∑
k=1

fk

)
,

subject to (i)
∑∞

k=0 fkP
n
k (t) ≤ h(t) and (ii) fk ≥ 0 for k ≥ 1.



Lower Bounds and Quadrature Rules

I An,h: set of functions f ≤ h satisfying the conditions (1).

I For a subspace Λ of C ([−1, 1]) of real-valued functions
continuous on [−1, 1], let

W(n,N,Λ; h) := sup
f ∈Λ∩An,h

N2(f0 − f (1)/N). (3)

I For a subspace Λ ⊂ C ([−1, 1]) and N > 1, we say
{(αi , ρi )}e−1

i=0 is a 1/N-quadrature rule exact for Λ if
−1 ≤ αi < 1 and ρi > 0 for i = 0, 1, . . . , e − 1 if

f0 = γn

∫ 1

−1
f (t)(1−t2)(n−3)/2dt =

f (1)

N
+

e−1∑
i=0

ρi f (αi ), (f ∈ Λ).



Theorem
Let {(αi , ρi )}e−1

i=0 be a 1/N-quadrature rule that is exact for a
subspace Λ ⊂ C ([−1, 1]).

(a) If f ∈ Λ ∩ An,h,

E(n,N; h) ≥ N2

(
f0 −

f (1)

N

)
= N2

e−1∑
i=0

ρi f (αi ). (4)

(b) We have

W(n,N,Λ; h) ≤ N2
e−1∑
i=0

ρih(αi ). (5)

If there is some f ∈ Λ ∩ An,h such that f (αi ) = h(αi ) for
i = 1, . . . , e − 1, then equality holds in (5).



Quadrature Rules

Quadrature Rules from Spherical Designs

If C ⊂ Sn−1 is a spherical τ design, then choosing
{α0, . . . , αe−1, 1} = {〈x , y〉 : x , y ∈ C} and ρi = fraction of times
αi occurs in {〈x , y〉 : x , y ∈ C} gives a 1/N quadrature rule exact
for Λ = Πτ .

Levenshtein Quadrature Rules
Of particular interest is when the number of nodes e satisfies 2e or
2e − 1 = τ + 1. Levenshtein gives bounds on N and τ for the
existence of such quadrature rules. Can show that Hermite
interpolant to an absolutely monotone1 function h on [−1, 1] is
in An,h.

1A function f is absolutely monotone on an interval I if f (k)(t) ≥ 0 for
t ∈ I and k = 0, 1, 2, . . ..



Sharp Codes

Definition
A spherical code C ⊂ Sn−1 is sharp if there are m inner products
between distinct points in it and it is a spherical (2m − 1)-design.

Theorem (Cohn and Kumar, 2006)

If C ⊂ Sn−1 is a sharp code, then C is universally optimal; i.e.,
C is h-energy optimal for any h that is absolutely monotone on
[−1, 1].



Figure : From: H.Cohn, A.Kumar, JAMS 2006.



Example: n-Simplex on Sn−1

Let C be N = n + 1 points on Sn−1 forming a regular simplex.
Then there is only one inner product α0 = 〈x , y〉 for x 6= y ∈ C .
Since

∑
x∈C x = 0, it easily follows that α0 = −1/n.

The first degree Gegenbauer polynomial P
(n)
1 (t) = t.

If h is absolutely monotone (or just increasing and convex) then
linear interpolant

f (t) = h(0) + h′(−1/n)(t + 1/n)

has f1 = h′(−1/n) ≥ 0 and, by convexity, stays below h(t) and so
shows that the n-simplex is a universally optimal spherical code.



D4 lattice in R4

C = minimal length vectors from D4 lattice in R4.

I N = |C | = 24

I {〈x , y〉 : x , y ∈ C} = {±1,±1/2, 0}
I C is a 5 design (not a 7 design). Use Levenshtein quadrature

rule:



Figure : Figure by Peter Dragnev (yesterday). Upper graph is interpolant
for Reisz s = 4 energy. Lower graph is for separation.



600 cell

I C = 120 points in R4. Each x ∈ C has 12 nearest neighbors
forming an icosahedron (Voronoi cells are dodecahedra).

I 8 inner products between distinct points in C :
{−1,±1/2, 0, (±1± 5)/4}.

I 2*7+1 interpolation conditions (would require τ = 14 design)

I C is an 11 design, but almost a 19 design (only 12-th moment
is nonzero). I.e. quadrature rule from C is exact on subspace

Λ of Π19 that is ⊥ to P
(4)
12 .

I Cohn and Kumar find family of 17-th degree polynomials that
proves universal optimality of 600 cell and they require
f11 = f12 = f13 = 0. Why?


