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Notation

» S"~1: unit sphere in R”
» Spherical Code: A finite set C C S"~! with cardinality |C|

» Interaction potential h: [-1,1] - RU {+o0} (low.
semicont.)

» The h-energy of a spherical code C:

E(n.Cih):=" Y h({x,y)),
x,y€Cy#x
where t = (x, y) denotes Euclidean inner product of x and y.
» Riesz s-potential: h(t) = (2 —2t)"5/%2 = |x — y|~*
» Log potential: h(t) = —log(2 — 2t) = —log |x — y|

» ‘Kissing' potential:

(e) = {o, —1<t<1)2

00, 1/2<t<1



Problem
Determine

E(n,N; h) := min{E(n,C; h) : |C| = N, C c S"1}
and find (prove) configuration that achieves minimal h-energy.

» Code fishing.

» Even if one ‘knows’ an optimal code, it is usually difficult to
prove optimality—need lower bounds on &£(n, N; h).

» Delsarte-Yudin linear programming bounds: Find a potential f
such that h > f for which we can obtain lower bounds for the
minimal f-energy £(n, N; f).

» Discuss optimal codes for N =2, 3,4, and 5 points on S2.



Optimal five point log and Riesz s-energy code on 52

(a) (b) ()

Figure : ‘Optimal’ 5-point configurations on S?: (a) bipyramid BP, (b)
optimal square-base pyramid SBP (s = 1), (c) optimal square-base
pyramid SBP (s = 16).



Optimal five point log and Riesz s-energy code on 52
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Figure : ‘Optimal’ 5-point configurations on S?: (a) bipyramid BP, (b)
optimal square-base pyramid SBP (s = 1), (c) optimal square-base
pyramid SBP (s = 16).

» P. D. Dragnev, D. A. Legg, and D. W. Townsend, Discrete
logarithmic energy on the sphere, Pacific J. Math. 207
(2002), 345-357.

» R. E. Schwartz, The Five-Electron Case of Thomson?s
Problem, Exp. Math. 22 (2013), 157-186.



Example: A= 5% N =174; s=1

Red = pentagon, Green = hexagon, Blue = heptagon




Example: A = S?%; N = 174; s=0

Red = pentagon, Green = hexagon, Blue = heptagon




Example: A = S5?; N = 1600; s=4

Red = pentagon, Green = hexagon,

Blue = heptagon




Example: A = 52; N = 1600; s=0

Red = pentagon, Green = hexagon, Blue = heptagon




Spherical Harmonics

» Harm(k): homogeneous harmonic polynomials in n variables
of degree k restricted to S"~! with

k — 2k -2
r := dim Harm(k) = < —:j 5 3> <+kn> .

» Spherical harmonics (degree k): {Yyi(x):j=1,2,...,n}
orthonormal basis of Harm(k) with respect to integration
using (n — 1)-dimensional surface area measure on S"~ 1.



Gegenbauer polynomials

» Gegenbauer polynomials: For fixed dimension n, {P,((")(t) 2o

is family of orthogonal polynomials with respect to the weight
(1 — t2)("=3)/2 on [—1,1] normalized so that P,E")(l) =1

» The Gegenbauer polynomials and spherical harmonics are
related through the well-known Addition Formula:

1 & n .
= Yi(x) Yig(y) = P (1), t=(x,y), x,y € S" L.

» Consequence: If C is a spherical code of N points on S"1,

ST P ((x,y) Z S5 V() Yigly

x,yeC j 1 xeCyeC

Z(Zm )

j]. xeC



‘Good’ potentials for lower bounds

Suppose f : [-1,1] — R is of the form
=3 fPM(),  fi=0forall k> 1. (1)

f(1) = %2 fk < oo == convergence is absolute and uniform.

Then:

E(n,Cif)= Y f((x,y)) = fF(1)N

xyeC

—ka ST P ((xy)) — FN

x,yeC
f(1)

> foN? — F(1)N = N? (ﬁ)— N>.



Thm (Delsarte-Yudin LP Bound)
Suppose f is of the form (1) and that h(t) > f(t) for all

t € [-1,1]. Then
E(n,N; h) > N3(fy — f(1)/N). (2)

An N-point spherical code C satisfies

E(n, C; h) = N2(fy — f(1)/N) if and only if both of the following
hold:

(a) f(t) = h(t) forall t € {(x,y):x#y, x,y € C}.

(b) for all k > 1, either fy =0 or 3, ¢ PL”((x,)) = 0.




Thm (Delsarte-Yudin LP Bound)
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The k-th moment M(C) ==Y, cc P\ ({x,y)) = 0 if and only
if > wec Y(x) =0 for all Y € Harm(k). If My (C) =0 for
1 < k <7, then Cis called a spherical T-design and

1
/ p(y)don(y) = = Z p(x), V polys p of deg at most 7.
sn-t N xeC



Thm (Delsarte-Yudin LP Bound)
Suppose f is of the form (1) and that h(t) > f(t) for all

t € [-1,1]. Then
E(n, N; h) > N?(fy — f(1)/N). (2)

An N-point spherical code C satisfies

E(n, C; h) = N?(fy — f(1)/N) if and only if both of the following
hold:

(a) f(t)=h(t)forall t e {(x,y) : x#y, x,y € C}.

(b) forall k > 1, either fy =0o0r 3, P,S")(<x,y>) =0.

Maximizing the lower bound (2) can be written as maximizing the
objective function

F(fy,f,...): ( ka>

subject to (i) Y po o fikPR(t) < h(t) and (i) fi > 0 for k > 1.



Lower Bounds and Quadrature Rules

> Apnt set of functions f < h satisfying the conditions (1).

» For a subspace A of C([—1,1]) of real-valued functions
continuous on [—1,1], let

W(n,N,A; h) == sup N3(fy — f(1)/N). (3)
FEANA, »
» For a subspace A C C([—1,1]) and N > 1, we say

{(oz,-,p,-)}fz_ol is a 1/N-quadrature rule exact for A if
—1<aj<land p;>0fori=0,1,...,e—1if

e—1

o= | 11 A2 = TS ). (ren)
— i=0



Theorem
Let {(ai, pi)}5Zy be a 1/N-quadrature rule that is exact for a
subspace N C C([-1,1]).

(a) IFF € AN Anp,

e—1
E(n,N; h) > N? (fo - fg\/”) =N pif(i).  (4)
i=0

(b) We have

e—1
W(n, N, A; h) < N?Y pih(ay). (5)
i=0
If there is some f € AN Ap p such that f(«;) = h(«;) for
i=1,...,e—1, then equality holds in (5).



Quadrature Rules

Quadrature Rules from Spherical Designs

If C € S"™1is a spherical 7 design, then choosing
{ao,...;ae—1,1} = {{x,y¥): x,y € C} and p; = fraction of times
aj oceurs in {(x,y): x,y € C} gives a 1/N quadrature rule exact
for A =T1..

Levenshtein Quadrature Rules

Of particular interest is when the number of nodes e satisfies 2e or
2e — 1 =171+ 1. Levenshtein gives bounds on N and 7 for the
existence of such quadrature rules. Can show that Hermite
interpolant to an absolutely monotone! function h on [—1,1] is
in An,h-

A function f is absolutely monotone on an interval / if f()(t) > 0 for
teland k=0,1,2,....



Sharp Codes

Definition
A spherical code C € S"! is sharp if there are m inner products
between distinct points in it and it is a spherical (2m — 1)-design.

Theorem (Cohn and Kumar, 2006)

If C C S"™1 is a sharp code, then C is universally optimal,; i.e.,
C is h-energy optimal for any h that is absolutely monotone on
[—1,1].
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TABLE 1. The known sharp configurations, together with the 600-cell.

n N M Inner products Name
2 N N —1 cos(2mj/N) (1 <j < NJ/2) N-gon
n N<n 1 -1/(N-1) simplex
n n+1 2 —1/n simplex
n 2n 3 —-1,0 cross polytope
3 12 5 —1,+1/ V5 icosahedron
4 120 11 —1,+1/2,0,(£1+5)/4 600-cell
8 240 7 —1,+1/2,0 Es roots
7 56 5 —1,+1/3 kissing
6 27 4 -1/2,1/4 kissing/Schlifli
5 16 3 -3/5,1/5 kissing
24 196560 11 —1,4+1/2,4+1/4,0 Leech lattice
23 4600 7 —1,+1/3,0 kissing
22 891 5 -1/2,-1/8,1/4 kissing
23 552 5 —1,£1/5 equiangular lines
22 275 4 —1/4,1/6 kissing
21 162 3 —2/7,1/)7 kissing
22 100 3 —4/11,1/11 Higman-Sims
3
q(’qfll (g+1)(¢®+1) 3 —1/q.1/¢* isotropic subspaces
(4ifg=2) (g a prime power)

Figure : From: H.Cohn, A.Kumar, JAMS 2006.



Example: n-Simplex on S"~!

Let C be N = n+ 1 points on S"~! forming a regular simplex.
Then there is only one inner product ap = (x,y) for x # y € C.
Since Y . x =0, it easily follows that ag = —1/n.

The first degree Gegenbauer polynomial P{")(t) =t.

If his absolutely monotone (or just increasing and convex) then
linear interpolant

f(t) = h(0) + K (=1/n)(t +1/n)

has fi = h'(—=1/n) > 0 and, by convexity, stays below h(t) and so
shows that the n-simplex is a universally optimal spherical code.



D, lattice in R*

C = minimal length vectors from Dy lattice in R,
» N=|C|=24
> {{(x,y): x,y € C} ={+£1,+1/2,0}

» Cis a 5 design (not a 7 design). Use Levenshtein quadrature
rule:
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Energy=250.833, Energy Bound=247.125

Figure : Figure by Peter Dragnev (yesterday). Upper graph is interpolant
for Reisz s = 4 energy. Lower graph is for separation.



600 cell

C = 120 points in R*. Each x € C has 12 nearest neighbors
forming an icosahedron (Voronoi cells are dodecahedra).

v

v

8 inner products between distinct points in C:
{-1,£1/2,0,(£1 £ 5)/4}.
2*7+1 interpolation conditions (would require 7 = 14 design)

v

v

C is an 11 design, but almost a 19 design (only 12-th moment
is nonzero). l.e. quadrature rule from C is exact on subspace

A of Mg that is L to P3).
Cohn and Kumar find family of 17-th degree polynomials that

proves universal optimality of 600 cell and they require
fll = f12 = f13 =0. Why?

v



