Universal lower bounds for potential energy of spherical codes

Doug Hardin (Vanderbilt University) Joint with: Peter Boyvalenkov (IMI, Sofia); Peter Dragnev (IPFW); Ed Saff (Vanderbilt University,); and Maya Stoyanova (Sofia University)

Midwestern Workshop on Asymptotic Analysis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Notation

- ▶ S^{n-1} : unit sphere in **R**ⁿ
- ▶ Spherical Code: A finite set $C \subset S^{n-1}$ with cardinality |C|
- Interaction potential h : [−1, 1] → R ∪ {+∞} (low. semicont.)
- The *h*-energy of a spherical code *C*:

$$E(n,C;h) := \sum_{x,y\in C, y\neq x} h(\langle x,y\rangle),$$

where $t = \langle x, y \rangle$ denotes Euclidean inner product of x and y.

- Riesz *s*-potential: $h(t) = (2 2t)^{-s/2} = |x y|^{-s}$
- Log potential: $h(t) = -\log(2-2t) = -\log|x-y|$
- 'Kissing' potential:

$$h(t)=egin{cases} 0, & -1\leq t\leq 1/2\ \infty, & 1/2\leq t\leq 1 \end{cases}$$

Problem Determine

$$\mathcal{E}(n, N; h) := \min\{E(n, C; h) : |C| = N, C \subset \mathbb{S}^{n-1}\}$$

and find (prove) configuration that achieves minimal *h*-energy.

- Code fishing.
- ► Even if one 'knows' an optimal code, it is usually difficult to prove optimality-need lower bounds on E(n, N; h).
- ▶ Delsarte-Yudin linear programming bounds: Find a potential f such that h ≥ f for which we can obtain lower bounds for the minimal f-energy E(n, N; f).

• Discuss optimal codes for N = 2, 3, 4, and 5 points on S^2 .

Optimal five point log and Riesz s-energy code on S^2

Figure : 'Optimal' 5-point configurations on \mathbb{S}^2 : (a) bipyramid BP, (b) optimal square-base pyramid SBP (s = 1), (c) optimal square-base pyramid SBP (s = 16).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Optimal five point log and Riesz s-energy code on S^2

Figure : 'Optimal' 5-point configurations on \mathbb{S}^2 : (a) bipyramid BP, (b) optimal square-base pyramid SBP (s = 1), (c) optimal square-base pyramid SBP (s = 16).

- P. D. Dragnev, D. A. Legg, and D. W. Townsend, Discrete logarithmic energy on the sphere, Pacific J. Math. 207 (2002), 345–357.
- R. E. Schwartz, The Five-Electron Case of Thomson?s Problem, Exp. Math. 22 (2013), 157–186.

Example: $A = S^2$; N = 174; s=1

Red = pentagon, **Green = hexagon**, **Blue = heptagon**

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example: $A = S^2$; N = 174; s=0

Red = pentagon, **Green = hexagon**, **Blue = heptagon**

・ロト・日本・モート モー うへぐ

Example: $A = S^2$; N = 1600; s=4 Red = pentagon, Green = hexagon, Blue = heptagon

Example: $A = S^2$; N = 1600; s=0 Red = pentagon, Green = hexagon, Blue = heptagon

Spherical Harmonics

▶ Harm(k): homogeneous harmonic polynomials in n variables of degree k restricted to Sⁿ⁻¹ with

$$r_k := \dim \operatorname{Harm}(k) = \binom{k+n-3}{n-2} \left(\frac{2k+n-2}{k} \right)$$

Spherical harmonics (degree k): {Y_{kj}(x) : j = 1, 2, ..., r_k} orthonormal basis of Harm(k) with respect to integration using (n − 1)-dimensional surface area measure on S^{n−1}.

Gegenbauer polynomials

- Gegenbauer polynomials: For fixed dimension n, {P_k⁽ⁿ⁾(t)}_{k=0}[∞] is family of orthogonal polynomials with respect to the weight (1 − t²)^{(n−3)/2} on [−1, 1] normalized so that P_k⁽ⁿ⁾(1) = 1.
- The Gegenbauer polynomials and spherical harmonics are related through the well-known Addition Formula:

$$\frac{1}{r_k}\sum_{j=1}^{r_k}Y_{kj}(x)Y_{kj}(y)=P_k^{(n)}(t), \qquad t=\langle x,y\rangle, \ x,y\in\mathbb{S}^{n-1}.$$

• Consequence: If C is a spherical code of N points on \mathbb{S}^{n-1} ,

$$\sum_{x,y\in C} P_k^{(n)}(\langle x,y\rangle) = \frac{1}{r_k} \sum_{j=1}^{r_k} \sum_{x\in C} \sum_{y\in C} Y_{kj}(x) Y_{kj}(y)$$
$$= \frac{1}{r_k} \sum_{j=1}^{r_k} \left(\sum_{x\in C} Y_{kj}(x)\right)^2 \ge 0.$$

'Good' potentials for lower bounds

Suppose $f: [-1,1] \rightarrow \mathbf{R}$ is of the form

$$f(t) = \sum_{k=0}^{\infty} f_k P_k^{(n)}(t), \qquad f_k \ge 0 \text{ for all } k \ge 1.$$
 (1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $f(1) = \sum_{k=0}^{\infty} f_k < \infty \implies$ convergence is absolute and uniform. Then:

$$\begin{split} E(n,C;f) &= \sum_{x,y\in C} f(\langle x,y\rangle) - f(1)N \\ &= \sum_{k=0}^{\infty} f_k \sum_{x,y\in C} P_k^{(n)}(\langle x,y\rangle) - f(1)N \\ &\geq f_0 N^2 - f(1)N = N^2 \left(f_0 - \frac{f(1)}{N}\right). \end{split}$$

Thm (Delsarte-Yudin LP Bound)

Suppose f is of the form (1) and that $h(t) \ge f(t)$ for all $t \in [-1, 1]$. Then

$$\mathcal{E}(n, N; h) \ge N^2(f_0 - f(1)/N).$$
 (2)

An *N*-point spherical code *C* satisfies $E(n, C; h) = N^2(f_0 - f(1)/N)$ if and only if both of the following hold:

(a)
$$f(t) = h(t)$$
 for all $t \in \{\langle x, y \rangle : x \neq y, x, y \in C\}$.
(b) for all $k \ge 1$, either $f_k = 0$ or $\sum_{x,y \in C} P_k^{(n)}(\langle x, y \rangle) = 0$.

Thm (Delsarte-Yudin LP Bound)

Suppose f is of the form (1) and that $h(t) \ge f(t)$ for all $t \in [-1, 1]$. Then

$$\mathcal{E}(n,N;h) \ge N^2(f_0 - f(1)/N). \tag{2}$$

An *N*-point spherical code *C* satisfies $E(n, C; h) = N^2(f_0 - f(1)/N)$ if and only if both of the following hold:

(a)
$$f(t) = h(t)$$
 for all $t \in \{\langle x, y \rangle : x \neq y, x, y \in C\}$.
(b) for all $k \ge 1$, either $f_k = 0$ or $\sum_{x,y \in C} P_k^{(n)}(\langle x, y \rangle) = 0$.

The *k*-th moment $M_k(C) := \sum_{x,y \in C} P_k^{(n)}(\langle x, y \rangle) = 0$ if and only if $\sum_{x \in C} Y(x) = 0$ for all $Y \in \text{Harm}(k)$. If $M_k(C) = 0$ for $1 \le k \le \tau$, then *C* is called a **spherical** τ -**design** and $\int_{\mathbb{S}^{n-1}} p(y) d\sigma_n(y) = \frac{1}{N} \sum p(x)$, \forall polys *p* of deg at most τ .

Thm (Delsarte-Yudin LP Bound)

Suppose f is of the form (1) and that $h(t) \ge f(t)$ for all $t \in [-1, 1]$. Then

$$\mathcal{E}(n,N;h) \ge N^2(f_0 - f(1)/N). \tag{2}$$

An *N*-point spherical code *C* satisfies $E(n, C; h) = N^2(f_0 - f(1)/N)$ if and only if both of the following hold:

(a)
$$f(t) = h(t)$$
 for all $t \in \{\langle x, y \rangle : x \neq y, x, y \in C\}$.
(b) for all $k \ge 1$, either $f_k = 0$ or $\sum_{x,y \in C} P_k^{(n)}(\langle x, y \rangle) = 0$.

Maximizing the lower bound (2) can be written as maximizing the objective function

$$F(f_0,f_1,\ldots):=N\left(f_0(N-1)-\sum_{k=1}^{\infty}f_k\right),$$

subject to (i) $\sum_{k=0}^{\infty} f_k P_k^n(t) \le h(t)$ and (ii) $f_k \ge 0$ for $k \ge 1$.

Lower Bounds and Quadrature Rules

• $A_{n,h}$: set of functions $f \leq h$ satisfying the conditions (1).

For a subspace ∧ of C([−1, 1]) of real-valued functions continuous on [−1, 1], let

$$\mathcal{W}(n, N, \Lambda; h) := \sup_{f \in \Lambda \cap A_{n,h}} N^2(f_0 - f(1)/N).$$
(3)

► For a subspace $\Lambda \subset C([-1, 1])$ and N > 1, we say $\{(\alpha_i, \rho_i)\}_{i=0}^{e-1}$ is a 1/N-quadrature rule exact for Λ if $-1 \leq \alpha_i < 1$ and $\rho_i > 0$ for $i = 0, 1, \dots, e-1$ if

$$f_0 = \gamma_n \int_{-1}^1 f(t)(1-t^2)^{(n-3)/2} dt = \frac{f(1)}{N} + \sum_{i=0}^{e-1} \rho_i f(\alpha_i), \quad (f \in \Lambda).$$

Theorem Let $\{(\alpha_i, \rho_i)\}_{i=0}^{e-1}$ be a 1/N-quadrature rule that is exact for a subspace $\Lambda \subset C([-1, 1])$. (a) If $f \in \Lambda \cap A_{n,h}$,

$$\mathcal{E}(n,N;h) \ge N^2 \left(f_0 - \frac{f(1)}{N} \right) = N^2 \sum_{i=0}^{e-1} \rho_i f(\alpha_i).$$
(4)

(b) We have

$$\mathcal{W}(n, N, \Lambda; h) \leq N^2 \sum_{i=0}^{e-1} \rho_i h(\alpha_i).$$
(5)

If there is some $f \in \Lambda \cap A_{n,h}$ such that $f(\alpha_i) = h(\alpha_i)$ for i = 1, ..., e - 1, then equality holds in (5).

Quadrature Rules

Quadrature Rules from Spherical Designs If $C \subset \mathbb{S}^{n-1}$ is a spherical τ design, then choosing $\{\alpha_0, \ldots, \alpha_{e-1}, 1\} = \{\langle x, y \rangle : x, y \in C\}$ and ρ_i = fraction of times α_i occurs in $\{\langle x, y \rangle : x, y \in C\}$ gives a 1/N quadrature rule exact for $\Lambda = \Pi_{\tau}$.

Levenshtein Quadrature Rules

Of particular interest is when the number of nodes e satisfies 2e or $2e - 1 = \tau + 1$. Levenshtein gives bounds on N and τ for the existence of such quadrature rules. Can show that Hermite interpolant to an **absolutely monotone**¹ function h on [-1, 1] is in $A_{n,h}$.

¹A function f is absolutely monotone on an interval I if $f^{(k)}(t) \ge 0$ for $t \in I$ and k = 0, 1, 2, ...

Sharp Codes

Definition

A spherical code $C \subset \mathbb{S}^{n-1}$ is **sharp** if there are *m* inner products between distinct points in it and it is a spherical (2m - 1)-design.

Theorem (Cohn and Kumar, 2006)

If $C \subset \mathbb{S}^{n-1}$ is a sharp code, then C is **universally optimal**; i.e., C is h-energy optimal for any h that is absolutely monotone on [-1, 1].

TABLE 1. The known sharp configurations, together with the 600-cell.

n	N	M	Inner products	Name
2	N	N-1	$\cos(2\pi j/N) \ (1 \le j \le N/2)$	N-gon
n	$N \leq n$	1	-1/(N-1)	simplex
n	n + 1	2	-1/n	simplex
n	2n	3	-1,0	cross polytope
3	12	5	$-1, \pm 1/\sqrt{5}$	icosahedron
4	120	11	$-1,\pm 1/2,0,(\pm 1\pm \sqrt{5})/4$	600-cell
8	240	7	$-1,\pm 1/2,0$	E_8 roots
7	56	5	$-1, \pm 1/3$	kissing
6	27	4	-1/2, 1/4	kissing/Schläffi
5	16	3	-3/5, 1/5	kissing
24	196560	11	$-1,\pm 1/2,\pm 1/4,0$	Leech lattice
23	4600	7	$-1,\pm 1/3,0$	kissing
22	891	5	-1/2, -1/8, 1/4	kissing
23	552	5	$-1, \pm 1/5$	equiangular lines
22	275	4	-1/4, 1/6	kissing
21	162	3	-2/7, 1/7	kissing
22	100	3	-4/11, 1/11	Higman-Sims
$q \frac{q^3 + 1}{q + 1}$	$(q+1)(q^3+1)$	3	$-1/q, 1/q^2$	isotropic subspaces
	(4	4 if $q = 2$	2)	(q a prime power)

Figure : From: H.Cohn, A.Kumar, JAMS 2006.

Example: *n*-Simplex on \mathbb{S}^{n-1}

Let *C* be N = n + 1 points on \mathbb{S}^{n-1} forming a regular simplex. Then there is only one inner product $\alpha_0 = \langle x, y \rangle$ for $x \neq y \in C$. Since $\sum_{x \in C} x = 0$, it easily follows that $\alpha_0 = -1/n$.

The first degree Gegenbauer polynomial $P_1^{(n)}(t) = t$.

If h is absolutely monotone (or just increasing and convex) then linear interpolant

$$f(t) = h(0) + h'(-1/n)(t+1/n)$$

has $f_1 = h'(-1/n) \ge 0$ and, by convexity, stays below h(t) and so shows that the *n*-simplex is a universally optimal spherical code.

C = minimal length vectors from D_4 lattice in \mathbf{R}^4 .

▶
$$N = |C| = 24$$

•
$$\{\langle x, y \rangle : x, y \in C\} = \{\pm 1, \pm 1/2, 0\}$$

C is a 5 design (not a 7 design). Use Levenshtein quadrature rule:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Energy=250.833, Energy Bound=247.125

Figure : Figure by Peter Dragnev (yesterday). Upper graph is interpolant for Reisz s = 4 energy. Lower graph is for separation.

600 cell

- ▶ C = 120 points in \mathbb{R}^4 . Each $x \in C$ has 12 nearest neighbors forming an icosahedron (Voronoi cells are dodecahedra).
- ▶ 8 inner products between distinct points in C: $\{-1, \pm 1/2, 0, (\pm 1 \pm 5)/4\}.$
- ▶ 2*7+1 interpolation conditions (would require $\tau = 14$ design)
- C is an 11 design, but almost a 19 design (only 12-th moment is nonzero). I.e. quadrature rule from C is exact on subspace Λ of Π₁₉ that is ⊥ to P⁽⁴⁾₁₂.
- Cohn and Kumar find family of 17-th degree polynomials that proves universal optimality of 600 cell and they require f₁₁ = f₁₂ = f₁₃ = 0. Why?