Two-Weight Inequalities for Commutators with Calderón-Zygmund Operators

Irina Holmes Joint work with B. D. Wick, M. Lacey, R. Rahm, S. Spencer, S. Petermichl

Michigan State University

Midwestern Workshop on Asymptotic Analysis IUPUI, October 6–8, 2017.

Outline

Introduction

Bloom's Result

Main Results

Upper Bound

Lower Bound: Key Idea

Starting point: Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

Starting point: Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

Starting point: Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

Recall:

► Hilbert transform - R:

$$Hf(x) := \frac{1}{\pi} \text{ p. v. } \int_{\mathbb{R}} \frac{f(y)}{x - y} \, dy$$

Starting point: Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

Recall:

▶ Riesz transforms - \mathbb{R}^n :

$$R_j f(x) := \frac{\Gamma((n+1)/2)}{\pi^{(n+1)/2}} \text{ p. v. } \int_{\mathbb{R}^n} f(y) \frac{x_j - y_j}{|x - y|^{n+1}} dy,$$

$$j=1,\ldots,n$$
.

Starting point: Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

Recall:

▶ Calderón-Zygmund Operators - \mathbb{R}^n :

$$Tf(x) := \int_{\mathbb{R}^n} K(x, y) f(y) \, dy$$

Starting point: Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

Recall:

► Commutators:

Starting point: Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

Recall:

► Commutators:

$$[b, T]f := b(Tf) - T(bf)$$

Starting point: Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

Recall:

Bounded Mean Oscillation:

Starting point: Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b. Recall:

► Bounded Mean Oscillation:

$$\|b\|_{BMO} := \sup_{Q} \frac{1}{|Q|} \int_{Q} |b(x) - \langle b \rangle_{Q} |dx$$

Starting point: Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

Recall:

Bounded Mean Oscillation:

$$||b||_{BMO} := \sup_{Q} \frac{1}{|Q|} \int_{Q} |b(x) - \langle b \rangle_{Q} |dx$$

 $\blacktriangleright \langle b \rangle_{Q} := \frac{1}{|Q|} \int_{Q} b(x) \, dx.$

Starting point: Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b. Recall:

► Bounded Mean Oscillation:

$$\|b\|_{BMO} := \sup_{Q} \frac{1}{|Q|} \int_{Q} |b(x) - \langle b \rangle_{Q} |dx$$

- $\blacktriangleright \langle b \rangle_{Q} := \frac{1}{|Q|} \int_{Q} b(x) dx.$
- $\vdash H^1(\mathbb{R}^n) BMO(\mathbb{R}^n)$ Duality (Fefferman, 1971)

Starting point: Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

Starting point: Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

Upper Bound:

$$||[b,T]:L^p\to L^p||\lesssim ||b||_{BMO}$$

Starting point: Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

Upper Bound:

$$\|[b,T]:L^p\to L^p\|\lesssim \|b\|_{BMO}$$

Lower Bound:

$$||b||_{BMO} \lesssim \sum_{i=1}^{n} ||[b, R_j]: L^p \to L^p||.$$

900

Starting point: Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

Recall:

▶ Weight: non-negative, locally integrable function w on \mathbb{R}^n .

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

- ▶ Weight: non-negative, locally integrable function w on \mathbb{R}^n .
- $ightharpoonup L^p(w)$: $\int |f(x)|^p w(x) dx$

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

- ▶ Weight: non-negative, locally integrable function w on \mathbb{R}^n .
- $ightharpoonup L^p(w)$: $\int |f(x)|^p w(x) dx$

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

- ▶ Weight: non-negative, locally integrable function w on \mathbb{R}^n .
- $ightharpoonup L^p(w)$: $\int |f(x)|^p dw$

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

- ▶ Weight: non-negative, locally integrable function w on \mathbb{R}^n .
- $ightharpoonup L^p(w)$: $\int |f(x)|^p dw$
- ▶ One-weight Inequalities: $T: L^p(w) \to L^p(w)$

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

- ▶ Weight: non-negative, locally integrable function w on \mathbb{R}^n .
- $ightharpoonup L^p(w)$: $\int |f(x)|^p dw$
- ▶ One-weight Inequalities: $T: L^p(w) \to L^p(w)$ mostly \checkmark

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

- ▶ Weight: non-negative, locally integrable function w on \mathbb{R}^n .
- $ightharpoonup L^p(w)$: $\int |f(x)|^p dw$
- ▶ One-weight Inequalities: $T: L^p(w) \to L^p(w)$ mostly \checkmark
- ▶ Two-weight Inequalities: $T: L^p(\mu) \to L^p(\lambda)$

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

- ▶ Weight: non-negative, locally integrable function w on \mathbb{R}^n .
- $ightharpoonup L^p(w)$: $\int |f(x)|^p dw$
- ▶ One-weight Inequalities: $T: L^p(w) \to L^p(w)$ mostly \checkmark
- ▶ Two-weight Inequalities: $T: L^p(\mu) \to L^p(\lambda)$ much harder!

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T]: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n),$$

where T is a CZO, in terms of the BMO norm of b.

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T] : L^p(\mathbb{R}^n; \mu) \to L^p(\mathbb{R}^n; \lambda),$$

where T is a CZO, in terms of the BMO norm of b.

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

Characterize the norm of the commutator

$$[b, T] : L^p(\mathbb{R}^n; \mu) \to L^p(\mathbb{R}^n; \lambda),$$

where T is a CZO, μ , λ are A_p weights, in terms of the BMO norm of b.

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T] : L^p(\mathbb{R}^n; \mu) \to L^p(\mathbb{R}^n; \lambda),$$

where T is a CZO, μ , λ are A_p weights, in terms of the BMO norm of b.

Recall:

 $ightharpoonup A_p$ weights:

$$[w]_{A_p} := \sup_{Q} \langle w \rangle_Q \langle w^{1-q} \rangle_Q^{p-1}$$

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T] : L^p(\mathbb{R}^n; \mu) \to L^p(\mathbb{R}^n; \lambda),$$

where T is a CZO, μ , λ are A_p weights, in terms of the BMO norm of b.

Recall:

 $ightharpoonup A_p$ weights:

$$[w]_{A_p} := \sup_{Q} \langle w \rangle_Q \langle w^{1-q} \rangle_Q^{p-1}$$

► Muckenhoupt, Hunt, Wheeden (1970's)

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T] : L^p(\mathbb{R}^n; \mu) \to L^p(\mathbb{R}^n; \lambda),$$

where T is a CZO, μ , λ are A_p weights, in terms of the BMO norm of b.

Recall:

 $ightharpoonup A_p$ weights:

$$[w]_{A_p} := \sup_{Q} \langle w \rangle_Q \langle w^{1-q} \rangle_Q^{p-1}$$

- ► Muckenhoupt, Hunt, Wheeden (1970's)
- $ightharpoonup M: L^p(w) o L^p(w) \Leftrightarrow w \in A_p$

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

Characterize the norm of the commutator

$$[b, T] : L^p(\mathbb{R}^n; \mu) \to L^p(\mathbb{R}^n; \lambda),$$

where T is a CZO, μ , λ are A_p weights, in terms of the BMO norm of b.

Recall:

 $ightharpoonup A_p$ weights:

$$[w]_{A_p} := \sup_{Q} \langle w \rangle_Q \langle w^{1-q} \rangle_Q^{p-1}$$

- ► Muckenhoupt, Hunt, Wheeden (1970's)
- $ightharpoonup H: L^p(w) o L^p(w) \Leftrightarrow w \in A_p$

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T] : L^p(\mathbb{R}^n; \mu) \to L^p(\mathbb{R}^n; \lambda),$$

where T is a CZO, μ , λ are A_p weights, in terms of the BMO norm of b.

Recall:

 \triangleright A_p weights:

$$[w]_{A_p} := \sup_{Q} \langle w \rangle_Q \langle w^{1-q} \rangle_Q^{p-1}$$

- ► Muckenhoupt, Hunt, Wheeden (1970's)
- $ightharpoonup H: L^p(w) \to L^p(w) \Leftrightarrow w \in A_p$
- ► A₂ weights:

$$[w]_{A_2} := \sup_Q \langle w
angle_Q \langle w^{-1}
angle_Q$$

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

Characterize the norm of the commutator

$$[b, T] : L^p(\mathbb{R}^n; \mu) \to L^p(\mathbb{R}^n; \lambda),$$

where T is a CZO, μ , λ are A_p weights, in terms of the BMO norm of b.

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

Characterize the norm of the commutator

$$[b, T] : L^p(\mathbb{R}^n; \mu) \to L^p(\mathbb{R}^n; \lambda),$$

where T is a CZO, μ , λ are A_p weights, in terms of the BMO norm of b??

Introduction

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T] : L^p(\mathbb{R}^n; \mu) \to L^p(\mathbb{R}^n; \lambda),$$

where T is a CZO, μ , λ are A_p weights, in terms of the BMO norm of b??

Recall:

▶ OK in the one-weight case $\mu = \lambda$.

Introduction

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T] : L^p(\mathbb{R}^n; \mu) \to L^p(\mathbb{R}^n; \lambda),$$

where T is a CZO, μ , λ are A_p weights, in terms of the BMO norm of \underline{b} ??

Recall:

- ▶ OK in the one-weight case $\mu = \lambda$.
- ▶ What if $\mu \neq \lambda$?

Introduction

GOAL: two-weight version of Coifman, Rochberg and Weiss, Factorization theorems for Hardy spaces in several variables, 1976

► Characterize the norm of the commutator

$$[b, T] : L^p(\mathbb{R}^n; \mu) \to L^p(\mathbb{R}^n; \lambda),$$

where T is a CZO, μ , λ are A_p weights, in terms of the BMO norm of \underline{b} ??

Recall:

- ▶ OK in the one-weight case $\mu = \lambda$.
- ▶ What if $\mu \neq \lambda$? Bloom!

Outline

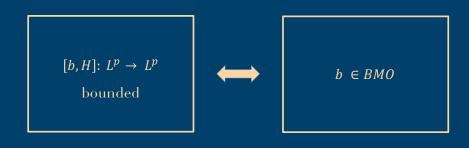
Introduction

Bloom's Result

Main Results

Upper Bound

Lower Bound: Key Idea



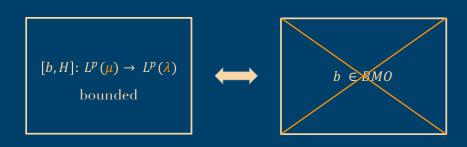
$$||b||_{BMO} := \sup_{Q} \frac{1}{|Q|} \int_{Q} |b(x) - \langle b \rangle_{Q} |dx$$

 $[b,H]: L^p(w) \to L^p(w)$ bounded $b \in BMO$

$$||b||_{BMO} := \sup_{Q} \frac{1}{|Q|} \int_{Q} |b(x) - \langle b \rangle_{Q} |dx$$

$$[b,H]: L^p(\mu) \to L^p(\lambda)$$
 bounded
$$b \in BMO$$

$$||b||_{BMO} := \sup_{Q} \frac{1}{|Q|} \int_{Q} |b(x) - \langle b \rangle_{Q} |dx$$



$$||b||_{BMO} := \sup_{Q} \frac{1}{|Q|} \int_{Q} |b(x) - \langle b \rangle_{Q} |dx$$

$$[b,H]: L^p(\mu) \to L^p(\lambda)$$
 bounded
$$b \in BMO(\nu)$$

$$||b||_{BMO} := \sup_{Q} \frac{1}{|Q|} \int_{Q} |b(x) - \langle b \rangle_{Q} |dx$$

$$[b,H]: L^p(\mu) \to L^p(\lambda)$$
 bounded

 $b \in BMO(v)$

$$v := \mu^{1/p} \lambda^{-1/p}$$

$$||b||_{BMO} := \sup_{Q} \frac{1}{|Q|} \int_{Q} |b(x) - \langle b \rangle_{Q} |dx$$

$$[b,H]: L^p(\mu) \to L^p(\lambda)$$
 bounded

 $b \in BMO(v)$

$$\nu \coloneqq \mu^{1/p} \lambda^{-1/p}$$
$$\|b\|_{BMO(\nu)} \coloneqq \sup_{Q} \frac{1}{|Q|} \int_{Q} |b(x) - \langle b \rangle_{Q} |dx$$

$$[b,H]:L^p(\mu)\to L^p(\lambda)$$
 bounded

 $b \in BMO(v)$

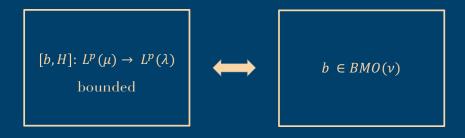
$$v \coloneqq \mu^{1/p} \lambda^{-1/p}$$
$$\|b\|_{BMO(v)} \coloneqq \sup_{Q} \frac{1}{v(Q)} \int_{Q} |b(x) - \langle b \rangle_{Q} |dx$$

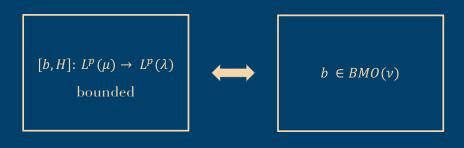
$$[b,H]: L^p(\mu) \to L^p(\lambda)$$
 bounded

$$b \in BMO(\nu)$$

$$\nu \coloneqq \mu^{1/p} \lambda^{-1/p}$$

$$\|b\|_{BMO(\nu)} \coloneqq \sup_{Q} \frac{1}{\nu(Q)} \int_{Q} |b(x) - \langle b \rangle_{Q} |dx$$





ightharpoonup Extend to all CZO's T on \mathbb{R}^n

$$[b,H]: L^{p}(\mu) \to L^{p}(\lambda)$$
 bounded
$$b \in BMO(\nu)$$

- \triangleright Extend to all CZO's T on \mathbb{R}^n
- > Long-term: Extend to multiparameter setting

$$[b,H]: L^{p}(\mu) \to L^{p}(\lambda)$$
 bounded
$$b \in BMO(\nu)$$

- \triangleright Extend to all CZO's T on \mathbb{R}^n
- Long-term: Extend to multiparameter setting
- > Dyadic approach

Outline

Introduction

Bloom's Result

Main Results

Upper Bound

Lower Bound: Key Idea

CRW:

Upper Bound:

$$\|[b,T]:L^p\to L^p\|\lesssim \|b\|_{BMO}$$

$$||b||_{BMO} \lesssim \sum_{i=1}^{n} ||[b, R_j] : L^p \to L^p||.$$

Main Results (H., Lacey, Wick):

Upper Bound:

$$\|[b,T]:L^p(\mu)\to L^p(\lambda)\|\lesssim \|b\|_{BMO(\nu)}$$

$$||b||_{BMO} \lesssim \sum_{i=1}^{n} ||[b, R_j]: L^p \to L^p||.$$

Main Results (H., Lacey, Wick):

Upper Bound:

$$\|[b,T]:L^p(\mu)\to L^p(\lambda)\|\lesssim \|b\|_{BMO(\nu)}$$

$$||b||_{BMO} \lesssim \sum_{i=1}^{n} ||[b, R_j]: L^p \to L^p||.$$

$$u := \mu^{rac{1}{p}} \lambda^{-rac{1}{p}}$$
 $\|b\|_{BMO(
u)} := \sup_{Q} rac{1}{
u(Q)} \int_{Q} |b(x) - \langle b
angle_{Q}| dx$

Main Results (H., Lacey, Wick):

Upper Bound:

$$\|[b,T]:L^p(\mu)\to L^p(\lambda)\|\lesssim \|b\|_{BMO(\nu)}$$

$$||b||_{BMO(\nu)} \lesssim \sum_{j=1}^{n} ||[b, R_j] : L^p(\mu) \to L^p(\lambda)||.$$

$$u := \mu^{rac{1}{p}} \lambda^{-rac{1}{p}}$$
 $\|b\|_{BMO(
u)} := \sup_{Q} rac{1}{
u(Q)} \int_{Q} |b(x) - \langle b \rangle_{Q} |dx$

Outline

Introduction

Bloom's Result

Main Results

Upper Bound

Lower Bound: Key Idea

$$||[b,T]:L^p(\mu)\to L^p(\lambda)||\lesssim ||b||_{BMO(\nu)}$$

$$||[b,T]:L^p(\mu)\to L^p(\lambda)||\lesssim ||b||_{BMO(\nu)}$$

 $\boldsymbol{\mathsf{I}}.$ Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

$$||[b,T]:L^p(\mu)\to L^p(\lambda)||\lesssim ||b||_{BMO(\nu)}$$

 $\ensuremath{\mathbf{I}}.$ Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

II. Bound:

$$\|[b,\mathsf{Dyadic\ Shift}]:L^p(\mu) o L^p(\lambda)\|\lesssim \|b\|_{BMO(
u)}$$



 $\ensuremath{\mathbf{I}}.$ Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

 $\ensuremath{\mathbf{I}}.$ Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

Dyadic Grids:

 $\ensuremath{\mathbf{I}}.$ Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

 $\ensuremath{\mathbf{I}}.$ Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

 $\ensuremath{\mathbf{I}}.$ Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

 $\ensuremath{\mathbf{I}}.$ Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

 $\ensuremath{\mathbf{I}}.$ Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]



 $\ensuremath{\mathbf{I}}.$ Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

Dyadic Grids: \mathcal{D}_{ω}



 $\ensuremath{\mathbf{I}}.$ Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

Dyadic Grids: \mathcal{D}_{ω}

 $\ensuremath{\mathbf{I}}.$ Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

Dyadic Grids: \mathcal{D}_{ω}

$$\blacktriangleright |I| = 2^{-k}, k \in \mathbb{Z}, \forall I \in \mathcal{D};$$

 $\ensuremath{\mathbf{I}}.$ Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

Dyadic Grids: \mathcal{D}_{ω}

- $\blacktriangleright |I| = 2^{-k}, k \in \mathbb{Z}, \forall I \in \mathcal{D};$
- $\blacktriangleright \ \ I \cap J \in \{\emptyset, I, J\}, \ \forall I, J \in \mathcal{D};$

I. Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

Dyadic Grids: \mathcal{D}_{ω}

- $\blacktriangleright |I| = 2^{-k}, k \in \mathbb{Z}, \forall I \in \mathcal{D};$
- ▶ $I \cap J \in \{\emptyset, I, J\}, \forall I, J \in \mathcal{D};$
- ▶ $\{I \in \mathcal{D}: |I| = 2^{-k}\}$ forms a partition of \mathbb{R} .

I. Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

Haar Functions: $I \in \mathcal{D}$

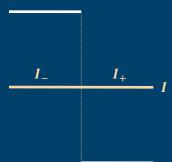
$$h_I := rac{1}{\sqrt{|I|}} \left(\mathbb{1}_{I_-} - \mathbb{1}_{I_+}
ight)$$

I. Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

Haar Functions: $I \in \mathcal{D}$

$$h_I := rac{1}{\sqrt{|I|}} \left(\mathbb{1}_{I_-} - \mathbb{1}_{I_+}
ight)$$

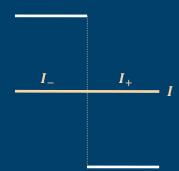


 $\ensuremath{\mathbf{I}}.$ Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

Haar Functions:

$$\{h_I: I \in \mathcal{D}\} = \text{ onb for } L^2.$$

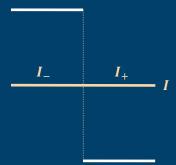


 $\ensuremath{\mathbf{I}}.$ Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

Haar Functions:

$$f = \sum_{I \in \mathcal{D}} \widehat{f}(I) h_I$$



I. Use a Representation Theorem to reduce the problem to bounding

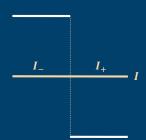
[b, Dyadic Shift]

$$\coprod_{\omega} f := rac{1}{\sqrt{2}} \sum_{I \in \mathcal{D}_{\omega}} \widehat{f}(I) \left(h_{I_{-}} - h_{I_{+}} \right).$$

I. Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

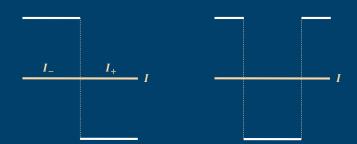
$$\coprod_{\omega} f := rac{1}{\sqrt{2}} \sum_{I \in \mathcal{D}_{\omega}} \widehat{f}(I) \left(h_{I_{-}} - h_{I_{+}}
ight).$$



I. Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

$$\mathrm{III}_{\omega}f:=rac{1}{\sqrt{2}}\sum_{I\in\mathcal{D}_{\omega}}\widehat{f}(I)\left(h_{I_{-}}-h_{I_{+}}
ight).$$



I. Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

$$\coprod_{\omega} f := rac{1}{\sqrt{2}} \sum_{I \in \mathcal{D}_{\omega}} \widehat{f}(I) \left(h_{I_{-}} - h_{I_{+}}
ight).$$

Petermichl (2000):
$$Hf = c\mathbb{E}_{\omega}\left(\mathrm{III}_{\omega}f\right)$$

I. Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

$$\coprod_{\omega} f := rac{1}{\sqrt{2}} \sum_{I \in \mathcal{D}_{\omega}} \widehat{f}(I) \left(h_{I_{-}} - h_{I_{+}}
ight).$$

Petermichl (2000):
$$Hf = c\mathbb{E}_{\omega}\left(\coprod_{\omega} f \right)$$

$$\Rightarrow \boxed{[b,H]f = c\mathbb{E}_{\omega}\left([b,\mathrm{III}_{\omega}]f\right)}$$

I. Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

$$\mathrm{III}_{\omega}f:=rac{1}{\sqrt{2}}\sum_{I\in\mathcal{D}_{\omega}}\widehat{f}(I)\left(h_{I_{-}}-h_{I_{+}}
ight).$$

Petermichl (2000):
$$\overline{Hf=c\mathbb{E}_{\omega}\left(\coprod_{\omega}f\right)}$$

$$\Rightarrow \boxed{[b,H]f = c\mathbb{E}_{\omega}\left([b,\mathrm{III}_{\omega}]f\right)}$$

$$\|[b,\coprod_{\omega}]:L^p(\mu)\to L^p(\lambda)\|\lesssim \|b\|_{BMO(\nu)}$$

 $\ensuremath{\mathbf{I}}.$ Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

For general CZOs on \mathbb{R}^n :

 $\ensuremath{\mathbf{I}}.$ Use a Representation Theorem to reduce the problem to bounding

[b, Dyadic Shift]

For general CZOs on \mathbb{R}^n : Hytönen Representation Theorem (2011).

II. Bound: $||[b, Dyadic Shift]: L^p(\mu) \to L^p(\lambda)|| \lesssim ||b||_{BMO(\nu)}$

$$\Pi_{b}f := \sum_{I} \widehat{b}(I) \langle f \rangle_{I} h_{I} \quad \Pi_{b}^{*}f := \sum_{I} \widehat{b}(I) \widehat{f}(I) \frac{\mathbb{1}_{I}}{|I|}$$

$$\Pi_{b}f := \sum_{l} \widehat{b}(l) \langle f \rangle_{l} h_{l} \quad \Pi_{b}^{*}f := \sum_{l} \widehat{b}(l) \widehat{f}(l) \frac{\mathbb{1}_{l}}{|I|}$$

$$bf = \Pi_{b}f + \Pi_{b}^{*}f + \Pi_{f}b$$

$$\Pi_{b}f := \sum_{l} \widehat{b}(l) \langle f \rangle_{l} h_{l} \quad \Pi_{b}^{*}f := \sum_{l} \widehat{b}(l) \widehat{f}(l) \frac{\mathbb{1}_{l}}{|I|}$$

$$bf = \Pi_{b}f + \Pi_{b}^{*}f + \Pi_{f}b$$

$$[b, \coprod]f = b(\coprod f) - \coprod (bf)$$

$$\Pi_{b}f := \sum_{l} \widehat{b}(l) \langle f \rangle_{l} h_{l} \quad \Pi_{b}^{*}f := \sum_{l} \widehat{b}(l) \widehat{f}(l) \frac{\mathbb{1}_{l}}{|I|}$$

$$bf = \Pi_{b}f + \Pi_{b}^{*}f + \Pi_{f}b$$

$$[b, \coprod]f = b(\coprod f) - \coprod (bf)$$
$$= (\prod_b \coprod + \prod_b^* \coprod - \coprod \prod_b - \coprod \prod_b^*)f$$

$$\Pi_{b}f := \sum_{l} \widehat{b}(l) \langle f \rangle_{l} h_{l} \quad \Pi_{b}^{*}f := \sum_{l} \widehat{b}(l) \widehat{f}(l) \frac{\mathbb{1}_{l}}{|I|}$$

$$bf = \Pi_{b}f + \Pi_{b}^{*}f + \Pi_{f}b$$

$$[b, \coprod]f = b(\coprod f) - \coprod (bf)$$

$$= (\prod_b \coprod f + \prod_b^* \coprod f - \coprod \prod_b - \coprod \prod_b^*)f$$

$$+ (\prod_{\coprod f} b - \coprod \prod_f b)$$

II. Bound: $||[b, \mathsf{Dyadic\ Shift}]: L^p(\mu) \to L^p(\lambda)|| \lesssim ||b||_{BMO(\nu)}$

$$[b, \coprod]f = (\Pi_b \coprod + \Pi_b^* \coprod - \coprod \Pi_b - \coprod \Pi_b^*)f + (\Pi_{\coprod If}b - \coprod \Pi_fb)$$

II. Bound: $\|[b, \overline{\mathsf{Dyadic Shift}}] : L^p(\mu) \to L^p(\lambda)\| \lesssim \|b\|_{BMO(\nu)}$

$$[b, \coprod]f = \underbrace{\left(\Pi_b \coprod + \Pi_b^* \coprod - \coprod \Pi_b - \coprod \Pi_b^*\right)f}_{f} + \left(\Pi_{\coprod f}b - \coprod \Pi_fb\right)$$

II. Bound: $||[b, Dyadic Shift]: L^p(\mu) \to L^p(\lambda)|| \lesssim ||b||_{BMO(\nu)}$

$$[b, \coprod]f = \underbrace{\left(\prod_b \coprod + \prod_b^* \coprod - \coprod \prod_b - \coprod \prod_b^*\right)f}_{\neq} + \underbrace{\left(\prod_{\coprod f} b - \coprod \prod_f b\right)}_{\textcircled{\textcircled{B}}}$$

II. Bound: $\|[b, \overline{\mathsf{Dyadic Shift}}] : L^p(\mu) \to L^p(\lambda)\| \lesssim \|b\|_{BMO(\nu)}$

$$[b, \coprod]f = \underbrace{\left(\prod_b \coprod + \prod_b^* \coprod - \coprod \prod_b - \coprod \prod_b^*\right)f}_{\downarrow} + \underbrace{\left(\prod_{\coprod f}b - \coprod \prod_f b\right)}_{\textcircled{\tiny \textcircled{\tiny \textcircled{\tiny }}}}$$

II. Bound: $||[b, Dyadic Shift]: \overline{L^p(\mu) \to L^p(\lambda)}|| \lesssim ||b||_{BMO(\nu)}$

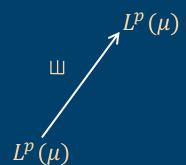
$$[b, \coprod]f = \underbrace{\left(\prod_b \coprod + \prod_b^* \coprod - \coprod \prod_b - \coprod \prod_b^*\right)f}_{\downarrow} + \underbrace{\left(\prod_{\coprod I f} b - \coprod \prod_f b\right)}_{\textcircled{\tiny \textcircled{\tiny \textcircled{\tiny }}}}$$

Known: III: $L^p(w) \rightarrow L^p(w)$

II. Bound: $||[b, Dyadic Shift]: \overline{L^p(\mu) \to L^p(\lambda)}|| \lesssim ||b||_{BMO(\nu)}$

$$[b, \coprod]f = \underbrace{\left(\prod_b \coprod + \prod_b^* \coprod - \coprod \prod_b - \coprod \prod_b^*\right)f}_{\bigcirc} + \underbrace{\left(\prod_{\coprod f} b - \coprod \prod_f b\right)}_{\bigcirc}$$

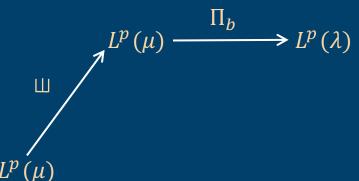
Known: III: $L^p(w) \to L^p(w)$



II. Bound: $||[b, Dyadic Shift]: L^p(\mu) \to L^p(\lambda)|| \lesssim ||b||_{BMO(\nu)}$

$$[b, \coprod]f = \underbrace{\left(\prod_b \coprod + \prod_b^* \coprod - \coprod \prod_b - \coprod \prod_b^*\right)f}_{\checkmark} + \underbrace{\left(\prod_{\coprod f} b - \coprod \prod_f b\right)}_{\textcircled{\tiny \tiny \bigcirc}\checkmark}$$

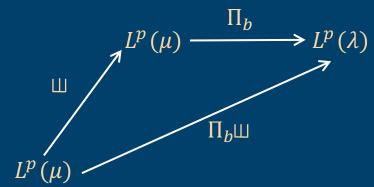
Known: III: $L^p(w) \to L^p(w)$



II. Bound: $||[b, \mathsf{Dyadic\ Shift}]: L^p(\mu) \to L^p(\lambda)|| \lesssim ||b||_{BMO(\nu)}$

$$[b, \coprod]f = \underbrace{\left(\prod_b \coprod + \prod_b^* \coprod - \coprod \prod_b - \coprod \prod_b^*\right)f}_{\checkmark} + \underbrace{\left(\prod_{\coprod f}b - \coprod \prod_f b\right)}_{\textcircled{\tiny \bigcirc}\checkmark}$$

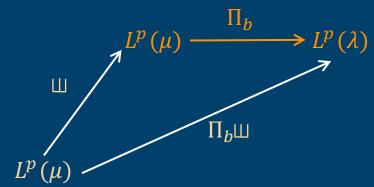
Known: $\coprod : L^p(w) \to L^p(w)$

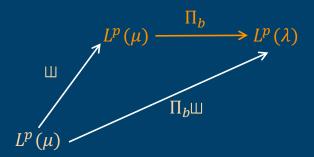


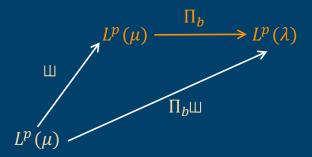
II. Bound: $||[b, \mathsf{Dyadic\ Shift}]: L^p(\mu) \to L^p(\lambda)|| \lesssim ||b||_{BMO(\nu)}$

$$[b, \coprod]f = \underbrace{\left(\prod_b \coprod + \prod_b^* \coprod - \coprod \prod_b - \coprod \prod_b^*\right)f}_{f} + \underbrace{\left(\prod_{\coprod f} b - \coprod \prod_f b\right)}_{\textcircled{\tiny \bigcirc} \checkmark}$$

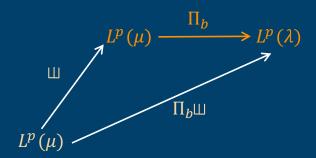
Known: $\coprod : L^p(w) \to L^p(w)$



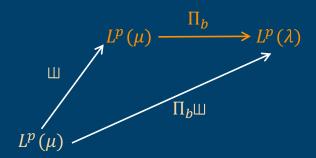




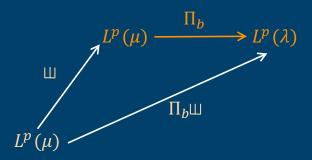
► Reduce to one-weight maximal and square function estimates!



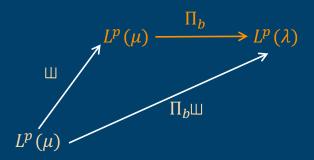
- ► Reduce to one-weight maximal and square function estimates!
- ► Key idea for this:



- ► Reduce to one-weight maximal and square function estimates!
- ► Key idea for this: a weighted dyadic form of H¹ BMO duality



- ► Reduce to one-weight maximal and square function estimates!
- ► Key idea for this: a weighted dyadic form of H^1 BMO duality (very nice for A_2 weights in particular)



- ► Reduce to one-weight maximal and square function estimates!
- ► Key idea for this: a weighted dyadic form of H¹ BMO duality (very nice for A₂ weights in particular)
- $\nu = \mu^{1/p} \lambda^{-1/p} \in A_2 !!!$

Outline

Introduction

Bloom's Result

Main Results

Upper Bound

Lower Bound: Key Idea

$$\|b\|_{BMO(\nu)} \lesssim \sum_{j=1}^n \|[b,R_j]:L^p(\mu) \to L^p(\lambda)\|.$$

$$\|b\|_{BMO(\nu)} \lesssim \sum_{j=1}^n \|[b,R_j]:L^p(\mu) \to L^p(\lambda)\|.$$

Follows the same strategy in CRW.

$$||b||_{BMO(\nu)} \lesssim \sum_{j=1}^{n} ||[b, R_j] : L^p(\mu) \to L^p(\lambda)||.$$

Follows the same strategy in CRW. Key fact: equivalent definitions of Bloom BMO:

$$||b||_{BMO(\nu)} \lesssim \sum_{j=1}^{n} ||[b, R_j] : L^p(\mu) \to L^p(\lambda)||.$$

Follows the same strategy in CRW.

$$||b||_{BMO(\nu)} \coloneqq \sup_{Q} \frac{1}{\nu(Q)} \int_{Q} |b(x) - \langle b \rangle_{Q} |dx$$

$$\|b\|_{BMO(
u)}\lesssim \sum_{j=1}^n\|[b,R_j]:L^p(\mu) o L^p(\lambda)\|.$$

Follows the same strategy in CRW.

$$||b||_{BMO(\nu)} \coloneqq \sup_{Q} \frac{1}{\nu(Q)} \int_{Q} |b(x) - \langle b \rangle_{Q} |dx$$

$$||b||_{BMO(\nu)} \cong \sup_{Q} \left(\frac{1}{\mu(Q)} \int_{Q} |b(x) - \langle b \rangle_{Q}|^{p} d\lambda\right)^{1/p}$$

$$\|b\|_{\mathcal{BMO}(
u)}\lesssim \sum_{j=1}^n\|[b,R_j]:L^p(\mu)\to L^p(\lambda)\|.$$

Follows the same strategy in CRW.

$$||b||_{BMO(\nu)} := \sup_{Q} \frac{1}{\nu(Q)} \int_{Q} |b(x) - \langle b \rangle_{Q} |dx$$

$$||b||_{BMO(\nu)} \cong \sup_{Q} \left(\frac{1}{\mu(Q)} \int_{Q} |b(x) - \langle b \rangle_{Q}|^{p} d\lambda\right)^{1/p}$$

$$\|b\|_{\mathcal{BMO}(
u)}\lesssim \sum_{j=1}^n\|[b,R_j]:L^p(\mu)\to L^p(\lambda)\|.$$

Follows the same strategy in CRW.

$$||b||_{BMO(\nu)} := \sup_{Q} \frac{1}{\nu(Q)} \int_{Q} |b(x) - \langle b \rangle_{Q} |dx$$

$$||b||_{BMO^{2}(v)} := \sup_{Q} \left(\frac{1}{\nu(Q)} \int_{Q} |b(x) - \langle b \rangle_{Q}|^{2} dv^{-1} \right)^{1/2}$$

$$||b||_{BMO(\nu)} \cong \sup_{Q} \left(\frac{1}{\mu(Q)} \int_{Q} |b(x) - \langle b \rangle_{Q}|^{p} d\lambda\right)^{1/p}$$

$$\|b\|_{\mathcal{BMO}(\nu)}\lesssim \sum_{j=1}^n\|[b,R_j]:L^p(\mu)\to L^p(\lambda)\|.$$

Follows the same strategy in CRW.

$$||b||_{BMO(\nu)} := \sup_{Q} \frac{1}{\nu(Q)} \int_{Q} |b(x) - \langle b \rangle_{Q} |dx|$$

$$||b||_{BMO^2(v)} := \sup_{Q} \left(\frac{1}{v(Q)} \int_{Q} |b(x) - \langle b \rangle_{Q}|^2 dv^{-1} \right)^{1/2}$$

$$||b||_{BMO(\nu)} \cong \sup_{Q} \left(\frac{1}{\mu(Q)} \int_{Q} |b(x) - \langle b \rangle_{Q}|^{p} d\lambda\right)^{1/p}$$

- S. Bloom: A commutator theorem and weighted BMO Trans. Amer. Math. Soc. **292** (1985), no. 1
- R. R. Coifman, R. Rochberg, G. Weiss: Factorization theorems for Hardy spaces in several variables, Ann. of Math. **103** (1976), no. 3
- T. Hytönen: The sharp weighted bound for general Calderón-Zygmund operators, Ann. of Math. 175 (2012), no. 3.
- B. Muckenhoupt, R. L. Wheeden: Weighted bounded mean oscillation and the Hilbert transform, Studia Math. **54** (1975/76), no. 3
- S. Petermichl: *Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol*, C. R. Acad. Sci. Paris Ser I. Math. **330** (2000), no. 6