Manifolds with polynomially convex hull without analytic structure

Alexander J. Izzo

 $X \subset \mathbb{C}^n$ compact

Definition: The **polynomially convex hull** of $X \subset \mathbb{C}^n$ is

 $\widehat{X} = \{ z \in \mathbb{C}^n : |p(z)| \le \sup_{x \in X} |p(x)| \text{ for every polynomial } p \}.$

X is said to be **polynomially convex** if $\widehat{X} = X$.

P(X) = the uniform closure of the polynomials in z_1, \ldots, z_n on X

The maximal ideal space of P(X) is \widehat{X} .

In particular, a necessary condition for P(X) = C(X) is that X be polynomially convex.

Replacing modulus of polynomials with linear functions gives ordinary convexity.

 $X \subset \mathbb{C}^n$ compact

Definition: The **polynomially convex hull** of $X \subset \mathbb{C}^n$ is

 $\widehat{X} = \{ z \in \mathbb{C}^n : |p(z)| \le \sup_{x \in X} |p(x)| \text{ for every polynomial } p \}.$

X is said to be **polynomially convex** if $\widehat{X} = X$.

 $\widehat{\partial D} = \overline{D}$ (*D* the unit disc in \mathbb{C})

In general, for $X \subset \mathbb{C}$, \widehat{X} is obtained from X by filling in the holes, and the functions in P(X) extend to holomorphic functions in the holes.

Examples in \mathbb{C}^2 :

$$X_1 = \{ (e^{i\theta}, 0) : 0 \le \theta \le 2\pi \} \qquad \qquad \widehat{X}_1 = \overline{D} \times \{ 0 \}$$
$$X_2 = \{ (e^{i\theta}, e^{-i\theta}) : 0 \le \theta \le 2\pi \} \qquad \qquad \widehat{X}_2 = X_2$$

Existence of analytic structure in hulls

It was once conjectured that for $X \subset \mathbb{C}^n$, if $\widehat{X} \setminus X$ is nonempty, then $\widehat{X} \setminus X$ contains an analytic disc.

Definition: A set $E \subset \mathbb{C}^n$ contains an analytic disc if there is a nonconstant analytic function $\varphi : D \to \mathbb{C}^n$ with $\varphi(D) \subset E$. Support for conjecture that $\widehat{X} \setminus X \neq \emptyset$ implies $\widehat{X} \setminus X$ contains an analytic disc

Theorem (Wermer, 1958): Suppose X is an analytic curve in \mathbb{C}^n . Then $\widehat{X} \setminus X$ is either empty or is a one-dimensional analytic variety.

This theorem was strengthened by Bishop, Royden, Stolzenberg, Alexander, etc.

Theorem (Alexander, 1971): Same result holds for X a rectifiable curve.

Stolzenberg shattered the hope that analytic structure always exists.

Theorem (Stolzenberg, 1963): There exists a compact set X in \mathbb{C}^2 such that $\widehat{X} \setminus X$ is nonempty but contains *no* analytic disc.

Henceforth will use the phrase "X has hull without analytic structure" to mean that $\widehat{X} \setminus X$ is nonempty but contains no analytic disc.

Theorem (Basener, 1973): There exists a smooth 3-sphere in \mathbb{C}^5 having hull without analytic structure.

 $D = \{z \in \mathbb{C} : |z| < 1\} \qquad \qquad \partial D = \{z \in \mathbb{C} : |z| = 1\}$

Theorem (Wermer, 1982): There exists a compact set contained in $\partial D \times \mathbb{C}$ having hull without analytic structure.

 $B_n = \{ z \in \mathbb{C}^n : ||z|| < 1 \}$

Theorem (Duval-Levenberg, 1995): Let K be a compact, polynomially convex subset of B_n , $n \ge 2$. Then there is a compact subset X of ∂B_n such that $\widehat{X} \supset K$ and such that $\widehat{X} \setminus (X \cup K)$ contains no analytic disc.

Theorem (Alexander, 1998): There exists a compact set contained in $\partial D \times \partial D$ having hull without analytic structure.

New Results

Theorem (I., Samuelsson Kalm, Wold; I., Stout): Every smooth compact manifold of real dimension $m \ge 2$ smoothly embeds in \mathbb{C}^N for some N so as to have hull without analytic structure.

When $m \ge 3$, can take N = 2m + 4. (I., S. Kalm, Wold)

When m = 2, can take N = 3. (I., Stout)

Theorem (I.-Stout): Every compact 2-manifold smoothly embeds in \mathbb{C}^3 so as to have hull without analytic structure. Furthermore, the embedded manifold can be chosen to be totally real.

Compare

Theorem (Duchamp, Stout 1981): No compact *m*-dimensional manifold is polynomially convex in \mathbb{C}^m .

Theorem (Alexander 1996): Every totally real compact mdimensional smooth manifold in \mathbb{C}^m has an analytic disc in its hull. $[f_1, \ldots, f_n]$ = uniformly closed algebra generated by f_1, \ldots, f_n

Wermer's maximality theorem (1953): The disc algebra on the circle $P(\partial D)$ is a maximal (closed) subalgebra of $C(\partial D)$, i.e., if $f \in C(\partial D) \setminus P(\partial D)$, then $[z, f] = C(\partial D)$.

Can reformulate as a statement about the graph Γ_f of f: For $f \in C(\partial D)$, either $\widehat{\Gamma}_f \setminus \Gamma_f = \emptyset$ and $P(\Gamma_f) = C(\Gamma_f)$, or else, $\widehat{\Gamma}_f \setminus \Gamma_f$ is an analytic disc.

Viewed in this way, Samuelsson Kalm and Wold began proving analogues in several variables.

$$T^2 = \{(z_1, z_2) : |z_1| = |z_2| = 1\}$$

Samuelsson Kalm and Wold needed an additional hypothesis in their several variable analogues of Wermer's theorem.

Definition: A complex-valued function on an open set in \mathbb{C}^n is **pluriharmonic** if it is harmonic on each complex line.

Theorem (Samuelsson-Wold 2012): Suppose $f_1, \ldots, f_N \in C(T^2)$ have pluriharmonic extensions to D^2 . Then either (i) $\widehat{\Gamma}_f \setminus \Gamma_f = \emptyset$ and $[z_1, z_2, f_1, \ldots, f_N]_{T^2} = C(T^2)$, or else (ii) $\widehat{\Gamma}_f \setminus \Gamma_f$ contains as analytic disc.

Can the pluriharmonic hypothesis be dropped? No.

Theorem (I., Samuelsson Kalm, Wold): There exists a realvalued smooth function f on $T^2 = \subset \mathbb{C}^2$ such that the graph $\Gamma_f \subset \mathbb{C}^3$ has a hull without analytic structure.

Proof sketch:

Theorem (Alexander, 1998): There exists a compact set E contained in T^2 having hull without analytic structure.

Lemma: Let $f \in C(X)$ be real-valued, $X \subset \mathbb{C}^n$ compact. Then graph Γ_f of f satisfies $\widehat{\Gamma}_f = \bigcup(\widehat{f^{-1}(t)} \times \{t\}) \subset \mathbb{C}^{n+1}$.

It suffices to construct a real-valued $f \in C^{\infty}(T^2)$ with zero set E and all other level sets polynomially convex. **Theorem** (I., Samuelsson Kalm, Wold): There exists a realvalued smooth function f on $T^2 = \subset \mathbb{C}^2$ such that the graph $\Gamma_f \subset \mathbb{C}^3$ has a hull without analytic structure.

Proof sketch:

It suffices to construct a real-valued $f \in C^{\infty}(T^2)$ with zero set E and all other level set polynomially convex.

Note: Every closed subset of a smooth manifold is the zero set of some smooth function.

Thus can choose f with zero set E. Arranging for the other level sets to be polynomially convex requires some work. A key ingredient is the following lemma. **Theorem** (I., Samuelsson Kalm, Wold): There exists a realvalued smooth function f on $T^2 = \subset \mathbb{C}^2$ such that the graph $\Gamma_f \subset \mathbb{C}^3$ has a hull without analytic structure.

Proof sketch:

It suffices to construct a real-valued $f \in C^{\infty}(T^2)$ with zero set E and all other level set polynomially convex.

Let
$$C_a = \{(z_1, z_2) \in T^2 : z_1 = a\}.$$

Lemma: Let $K \subset T^2$ be a closed set that contains no full C_a and is disjoint from some C_a . Then P(K) = C(K), and in particular K is polynomially convex.

Theorem (I., Samuelsson Kalm, Wold): Every smooth compact manifold of real dimension $m \ge 3$ smoothly embeds in \mathbb{C}^{2m+4} so as to have hull without analytic structure.

The proof uses Alexander's set in T^2 with hull without analytic structure to get an embedding in some \mathbb{C}^N , and a transversality argument to reduce the dimension to 2m + 4. What about 2-manifolds with hull without analytic structure?

Theorem (I.-Stout): Every compact 2-manifold smoothly embeds in \mathbb{C}^3 so as to have hull without analytic structure. Furthermore, the embedded manifold can be chosen to be totally real. Classification of compact surfaces: Denote the sphere by S, the torus by T, and the projective plane by \mathbb{P} . Denote the connected sum of two compact surfaces S_1 and S_2 by $S_1 \# S_2$. Then the following is a complete list of the compact surfaces:

S; T, T#T, T#T#T,...; P, P#P, P#P#P,....

Classification of compact surfaces: The following is a complete list of the compact surfaces:

 $S; T, T#T, T#T#T, \ldots; P, P#P, P#P#P, \ldots$

Now to get an embedding of a connected sum of tori in \mathbb{C}^3 with hull without analytic structure:

Start with the standard torus $T^2 \subset \mathbb{C}^2$, line up as many disjoint copies of the torus as needed in \mathbb{C}^2 , cut out small holes, and connect with tubes to form Σ . Then define a smooth real-valued function f on Σ with zero set Alexander's set E and all other level sets polynomially convex. Then invoke the lemma used earlier about the hull of the graph of a real-valued function. **Classification of compact surfaces**: The following is a complete list of the compact surfaces:

 $\mathbb{S}; \mathbb{T}, \mathbb{T} \neq \mathbb{T}, \mathbb{T} \neq \mathbb{T} \neq \mathbb{T}, \ldots; \mathbb{P}, \mathbb{P} \neq \mathbb{P}, \mathbb{P} \neq \mathbb{P} \neq \mathbb{P}, \ldots$

For the general case, we find a smooth sphere in \mathbb{C}^2 containing Alexander's set, and then form an arbitrary surface again by forming a connected sum using tubes.