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X ⊂ C
n compact

Definition: The polynomially convex hull of X ⊂ C
n is

X̂ = {z ∈ C
n : |p(z)| ≤ sup

x∈X

|p(x)| for every polynomial p}.

X is said to be polynomially convex if X̂ = X.

P (X)= the uniform closure of the polynomials in z1, . . . , zn

on X

The maximal ideal space of P (X) is X̂.

In particular, a necessary condition for P (X) = C(X) is that

X be polynomially convex.

Replacing modulus of polynomials with linear functions gives

ordinary convexity.



X ⊂ C
n compact

Definition: The polynomially convex hull of X ⊂ C
n is

X̂ = {z ∈ C
n : |p(z)| ≤ sup

x∈X

|p(x)| for every polynomial p}.

X is said to be polynomially convex if X̂ = X.

∂̂D = D (D the unit disc in C)

In general, for X ⊂ C, X̂ is obtained from X by filling in

the holes, and the functions in P (X) extend to holomorphic

functions in the holes.



Examples in C
2:

X1 = {(eiθ, 0) : 0 ≤ θ ≤ 2π} X̂1 = D × {0}

X2 = {(eiθ, e−iθ) : 0 ≤ θ ≤ 2π} X̂2 = X2

Existence of analytic structure in hulls

It was once conjectured that for X ⊂ C
n, if X̂\X is nonempty,

then X̂ \ X contains an analytic disc.

Definition: A set E ⊂ C
n contains an analytic disc if

there is a nonconstant analytic function ϕ : D → C
n with

ϕ(D) ⊂ E.



Support for conjecture that X̂\X 6= ∅ implies X̂\X contains

an analytic disc

Theorem (Wermer, 1958): Suppose X is an analytic curve

in C
n. Then X̂ \ X is either empty or is a one-dimensional

analytic variety.

This theorem was strengthened by Bishop, Royden, Stolzen-

berg, Alexander, etc.

Theorem (Alexander, 1971): Same result holds for X a

rectifiable curve.



Stolzenberg shattered the hope that analytic structure always

exists.

Theorem (Stolzenberg, 1963): There exists a compact set

X in C
2 such that X̂\X is nonempty but contains no analytic

disc.

Henceforth will use the phrase “X has hull without analytic

structure” to mean that X̂ \X is nonempty but contains no

analytic disc.

Theorem (Basener, 1973): There exists a smooth 3-sphere

in C
5 having hull without analytic structure.



D = {z ∈ C : |z| < 1} ∂D = {z ∈ C : |z| = 1}

Theorem (Wermer, 1982): There exists a compact set con-

tained in ∂D × C having hull without analytic structure.

Bn = {z ∈ C
n : ‖z‖ < 1}

Theorem (Duval-Levenberg, 1995): Let K be a compact,

polynomially convex subset of Bn, n ≥ 2. Then there is a

compact subset X of ∂Bn such that X̂ ⊃ K and such that

X̂ \ (X ∪ K) contains no analytic disc.

Theorem (Alexander, 1998): There exists a compact set

contained in ∂D×∂D having hull without analytic structure.



New Results

Theorem (I., Samuelsson Kalm, Wold; I., Stout): Every

smooth compact manifold of real dimension m ≥ 2 smoothly

embeds in C
N for some N so as to have hull without analytic

structure.

When m ≥ 3, can take N = 2m + 4. (I., S. Kalm, Wold)

When m = 2, can take N = 3. (I., Stout)



Theorem (I.-Stout): Every compact 2-manifold smoothly

embeds in C
3 so as to have hull without analytic structure.

Furthermore, the embedded manifold can be chosen to be

totally real.

Compare

Theorem (Duchamp, Stout 1981): No compact m-dimensional

manifold is polynomially convex in C
m.

Theorem (Alexander 1996): Every totally real compact m-

dimensional smooth manifold in C
m has an analytic disc in

its hull.



[f1, . . . , fn] =uniformly closed algebra generated by f1, . . . , fn

Wermer’s maximality theorem (1953): The disc alge-

bra on the circle P (∂D) is a maximal (closed) subalgebra of

C(∂D), i.e., if f ∈ C(∂D) \ P (∂D), then [z, f ] = C(∂D).

Can reformulate as a statement about the graph Γf of f :

For f ∈ C(∂D), either Γ̂f \ Γf = ∅ and P (Γf ) = C(Γf ), or

else, Γ̂f \ Γf is an analytic disc.

Viewed in this way, Samuelsson Kalm and Wold began prov-

ing analogues in several variables.

T 2 = {(z1, z2) : |z1| = |z2| = 1}



Samuelsson Kalm and Wold needed an additional hypothesis

in their several variable analogues of Wermer’s theorem.

Definition: A complex-valued function on an open set in C
n

is pluriharmonic if it is harmonic on each complex line.

Theorem (Samuelsson-Wold 2012): Suppose f1, . . . , fN ∈

C(T 2) have pluriharmonic extensions to D2. Then either

(i) Γ̂f \ Γf = ∅ and [z1, z2, f1, . . . , fN ]T 2 = C(T 2), or else

(ii) Γ̂f \ Γf contains as analytic disc.

Can the pluriharmonic hypothesis be dropped? No.



Theorem (I., Samuelsson Kalm, Wold): There exists a real-

valued smooth function f on T 2 =⊂ C
2 such that the graph

Γf ⊂ C
3 has a hull without analytic structure.

Proof sketch:

Theorem (Alexander, 1998): There exists a compact set E

contained in T 2 having hull without analytic structure.

Lemma: Let f ∈ C(X) be real-valued, X ⊂ C
n compact.

Then graph Γf of f satisfies Γ̂f =
⋃

(f̂−1(t) × {t}) ⊂ C
n+1.

It suffices to construct a real-valued f ∈ C∞(T 2) with zero

set E and all other level sets polynomially convex.



Theorem (I., Samuelsson Kalm, Wold): There exists a real-

valued smooth function f on T 2 =⊂ C
2 such that the graph

Γf ⊂ C
3 has a hull without analytic structure.

Proof sketch:

It suffices to construct a real-valued f ∈ C∞(T 2) with zero

set E and all other level set polynomially convex.

Note: Every closed subset of a smooth manifold is the zero

set of some smooth function.

Thus can choose f with zero set E. Arranging for the other

level sets to be polynomially convex requires some work.

A key ingredient is the following lemma.



Theorem (I., Samuelsson Kalm, Wold): There exists a real-

valued smooth function f on T 2 =⊂ C
2 such that the graph

Γf ⊂ C
3 has a hull without analytic structure.

Proof sketch:

It suffices to construct a real-valued f ∈ C∞(T 2) with zero

set E and all other level set polynomially convex.

Let Ca = {(z1, z2) ∈ T 2 : z1 = a}.

Lemma: Let K ⊂ T 2 be a closed set that contains no full

Ca and is disjoint from some Ca. Then P (K) = C(K), and

in particular K is polynomially convex.



Theorem (I., Samuelsson Kalm, Wold): Every smooth com-

pact manifold of real dimension m ≥ 3 smoothly embeds in

C
2m+4 so as to have hull without analytic structure.

The proof uses Alexander’s set in T 2 with hull without an-

alytic structure to get an embedding in some C
N , and a

transversality argument to reduce the dimension to 2m + 4.



What about 2-manifolds with hull without analytic struc-

ture?

Theorem (I.-Stout): Every compact 2-manifold smoothly

embeds in C
3 so as to have hull without analytic structure.

Furthermore, the embedded manifold can be chosen to be

totally real.



Classification of compact surfaces: Denote the sphere

by S, the torus by T, and the projective plane by P. Denote

the connected sum of two compact surfaces S1 and S2 by

S1#S2. Then the following is a complete list of the compact

surfaces:

S; T, T#T, T#T#T, . . . ; P, P#P, P#P#P, . . . .



Classification of compact surfaces: The following is a

complete list of the compact surfaces:

S; T, T#T, T#T#T, . . . ; P, P#P, P#P#P, . . . .

Now to get an embedding of a connected sum of tori in C
3

with hull without analytic structure:

Start with the standard torus T 2 ⊂ C
2, line up as many

disjoint copies of the torus as needed in C
2, cut out small

holes, and connect with tubes to form Σ. Then define a

smooth real-valued function f on Σ with zero set Alexander’s

set E and all other level sets polynomially convex. Then

invoke the lemma used earlier about the hull of the graph of

a real-valued function.



Classification of compact surfaces: The following is a

complete list of the compact surfaces:

S; T, T#T, T#T#T, . . . ; P, P#P, P#P#P, . . . .

For the general case, we find a smooth sphere in C
2 con-

taining Alexander’s set, and then form an arbitrary surface

again by forming a connected sum using tubes.


