A new approach to the L^p -theory of $-\Delta + b \cdot \nabla$, and its applications to Feller processes with general drifts.

Damir Kinzebulatov

(McGill and the CRM)

www.math.toronto.edu/dkinz

October 2015

The key component of many models of Math. Physics: Brownian motion

A trajectory of a three-dimensional Brownian motion

Brownian motion is modeled by Wiener process W_t (where $t \ge 0$, $W_0 = 0$)

The key component of many models of Math. Physics: Brownian motion

A trajectory of a three-dimensional Brownian motion

Brownian motion is modeled by Wiener process W_t (where $t \ge 0$, $W_0 = 0$) The simplest diffusion processes Brownian motion perturbed by a (singular) drift $b: \mathbb{R}^d \to \mathbb{R}^d$?

Brownian motion perturbed by a (singular) drift $b : \mathbb{R}^d \to \mathbb{R}^d$?

Varadhan, Strook, Albeverio, Krylov, Carlen and many others ...

Brownian motion perturbed by a (singular) drift $b : \mathbb{R}^d \to \mathbb{R}^d$?

Varadhan, Strook, Albeverio, Krylov, Carlen and many others

The long search for the cricial singularities of the drift $b \dots$

Probability

Analysis

 $W_t \quad \longleftrightarrow \quad -\Delta$

Precisely, given a realization $W_s \in \mathbb{R}^d$, s < t, we have

i.e. to find the probability we need to solve the heat equation

Precisely, given a realization $W_s \in \mathbb{R}^d$, s < t, we have

i.e. to find the probability we need to solve the heat equation

 \Rightarrow Analytic methods in Probability

By analogy: let X_t be a Brownian motion perturbed by drift $b:\mathbb{R}^d\to\mathbb{R}^d$ Then we must have

$$\mathbb{P}[X_t \in A] = \left(e^{-(t-s)(-\Delta+b\cdot\nabla)}\mathbf{1}_A\right)(X_s), \qquad s < t$$

By analogy: let X_t be a Brownian motion perturbed by drift $b:\mathbb{R}^d\to\mathbb{R}^d$ Then we must have

$$\mathbb{P}[X_t \in A] = \left(e^{-(t-s)(-\Delta+b\cdot\nabla)}\mathbf{1}_A\right)(X_s), \qquad s < t$$

e.g. take $b \equiv 0 \Rightarrow X_t = W_t$

By analogy: let X_t be a Brownian motion perturbed by drift $b:\mathbb{R}^d\to\mathbb{R}^d$ Then we must have

$$\mathbb{P}[X_t \in A] = \left(e^{-(t-s)(-\Delta+b\cdot\nabla)}\mathbf{1}_A\right)(X_s), \qquad s < t$$

e.g. take $b \equiv 0 \Rightarrow X_t = W_t$

We can solve the heat equation for fairly singular b's. But ...

... will the solutions of the heat equation determine a diffusion process?

... will the solutions of the heat equation determine a diffusion process?

The research program started in 1980s, closely tied to the progress in PDEs, and continuing within emerging areas of Probability (SPDEs)...

What singularities of the drift are admissible?

What singularities of the drift are admissible?

 $d \geqslant 3$

The best possible result in terms of L^p -spaces

Denote $L^p = L^p(\mathbb{R}^d)$ Stampacchia . . . Krylov, Röckner, Stannat and many others

$$L^{d} + L^{\infty}$$

$$\uparrow$$

$$L^{p} + L^{\infty} \quad (p > d)$$

Critical drifts?

Example: A vector field having critical singularity

$$b(x) := x|x|^{-2}, \quad x \in \mathbb{R}^3$$

(clearly, $b \notin L^d + L^\infty$)

Example: A vector field having critical singularity

$$b(x) := x|x|^{-2}, \quad x \in \mathbb{R}^3$$

(clearly, $b \notin L^d + L^\infty$)

There is a diffusion process X_t with drift b. In fact, a weak solution of

$$dX_t = x|x|^{-2}dt + dW_t, \quad X_0 = 0$$

Example: A vector field having critical singularity

$$b(x) := x|x|^{-2}, \quad x \in \mathbb{R}^3$$

(clearly, $b \notin L^d + L^\infty$)

There is a diffusion process X_t with drift b. In fact, a weak solution of

$$dX_t = x|x|^{-2}dt + dW_t, \quad X_0 = 0$$

Replace $x|x|^{-2}$ with $(1+\varepsilon)x|x|^{-2}$ and the process will cease to exist

In other words, singularities of b are critical if they are sensitive to multiplication by constants

In other words, singularities of b are critical if they are sensitive to multiplication by constants

The singularities of a $b \in L^d$ are sub-critical

The classes of critical vector fields previously studied in the literature

Critical point singularities of the drift

The class of form-bounded vector fields¹

$$\mathbf{F}_{\delta} := \left\{ b \in L^2_{\mathrm{loc}} : \lim_{\lambda \uparrow \infty} \left\| |b| (\lambda - \Delta)^{-\frac{1}{2}} \right\|_{L^2 \to L^2} \leqslant \sqrt{\delta} \right\}$$

Example:
$$b(x) = \sqrt{\delta} \frac{d-2}{2} x |x|^{-2}$$
 (Hardy inequality)

¹In relatively elementary terms: Kerman-Sawyer, Chang-Wilson-Wolff

Critical point singularities of the drift

The class of form-bounded vector fields¹

$$\mathbf{F}_{\delta} := \left\{ b \in L^2_{\mathrm{loc}} : \lim_{\lambda \uparrow \infty} \left\| |b| (\lambda - \Delta)^{-\frac{1}{2}} \right\|_{L^2 \to L^2} \leqslant \sqrt{\delta} \right\}$$

Example: $b(x) = \sqrt{\delta} \frac{d-2}{2} x |x|^{-2}$ (Hardy inequality)

 \mathbf{F}_{δ} is 'responsible' for dissipativity of $-\Delta + b \cdot \nabla$ in L^p

 \Rightarrow a diffusion via a Moser-type iterative procedure of Kovalenko-Semenov

¹In relatively elementary terms: Kerman-Sawyer, Chang-Wilson-Wolff

Critical hypersurface singularities of the drift

The Kato class of vector fields

$$\mathbf{K}_{\delta}^{d+1} := \left\{ b \in L^{1}_{\mathrm{loc}} : \lim_{\lambda \uparrow \infty} \left\| |b| (\lambda - \Delta)^{-\frac{1}{2}} \right\|_{L^{1} \to L^{1}} \leqslant \delta \right\}$$

²Yu. Semenov, Q. S. Zhang, B. Davies ... earlier, J. Nash, ...

Critical hypersurface singularities of the drift

The Kato class of vector fields

$$\mathbf{K}_{\delta}^{d+1} := \left\{ b \in L^{1}_{\mathrm{loc}} : \lim_{\lambda \uparrow \infty} \left\| |b| (\lambda - \Delta)^{-\frac{1}{2}} \right\|_{L^{1} \to L^{1}} \leqslant \delta \right\}$$

Example:

$$|b(x)| = ||x| - 1|^{-\gamma}, \quad \gamma < 1$$

is in \mathbf{K}_{0}^{d+1}

²Yu. Semenov, Q. S. Zhang, B. Davies ... earlier, J. Nash, ...

Critical hypersurface singularities of the drift

The Kato class of vector fields

$$\mathbf{K}_{\delta}^{d+1} := \left\{ b \in L^{1}_{\mathrm{loc}} : \lim_{\lambda \uparrow \infty} \left\| |b| (\lambda - \Delta)^{-\frac{1}{2}} \right\|_{L^{1} \to L^{1}} \leqslant \delta \right\}$$

Example:

$$|b(x)| = ||x| - 1|^{-\gamma}, \quad \gamma < 1$$

is in \mathbf{K}_0^{d+1}

 $\mathbf{K}^{d+1}_{\delta}$ is 'responsible' for the Gaussian bounds^2 for $-\Delta + b \cdot
abla$

 \Rightarrow the Gaussian bounds yield a diffusion

²Yu. Semenov, Q. S. Zhang, B. Davies ... earlier, J. Nash, ...

Crucial features:

– Defined in terms of the operators that constitute the $\ensuremath{\mathsf{problem}}^3$

³This intuition worked, in particular, in unique continuation for Schrödinger operators with form-bounded potentials (Kinzebulatov-Shartser, JFA, 2010)

Crucial features:

– Defined in terms of the operators that constitute the problem 3

– Are integral conditions, i.e. the geometry of the singularities is not important (well, \dots) \dots realizations of random fields (SHE)

³This intuition worked, in particular, in unique continuation for Schrödinger operators with form-bounded potentials (Kinzebulatov-Shartser, JFA, 2010)

Crucial features:

– Defined in terms of the operators that constitute the problem 3

- Are integral conditions, i.e. the geometry of the singularities is not important (well, \ldots) ... realizations of random fields (SHE)

- What really matters is the relative bound $\delta > 0$ (as in $\delta x |x|^{-2}$; has to be small, so that $b \cdot \nabla \leq -\Delta$). For instance, $L^d \subset \mathbf{F}_0 := \bigcap_{\delta > 0} \mathbf{F}_{\delta}$.

³This intuition worked, in particular, in unique continuation for Schrödinger operators with form-bounded potentials (Kinzebulatov-Shartser, JFA, 2010)

Crucial features:

– Defined in terms of the operators that constitute the problem 3

– Are integral conditions, i.e. the geometry of the singularities is not important (well, \ldots) ... realizations of random fields (SHE)

- What really matters is the relative bound $\delta > 0$ (as in $\delta x |x|^{-2}$; has to be small, so that $b \cdot \nabla \leq -\Delta$). For instance, $L^d \subset \mathbf{F}_0 := \bigcap_{\delta > 0} \mathbf{F}_{\delta}$.

– Are L^1 , L^2 -conditions (e.g. Kato class of measure-valued drifts: Bass-Chen, Kim-Song), cf. " $b \in L^{d}$ "

³This intuition worked, in particular, in unique continuation for Schrödinger operators with form-bounded potentials (Kinzebulatov-Shartser, JFA, 2010)

The state of affairs (not so long ago)

The search for 'the right' class of critical drifts \boldsymbol{b}

The next step:

$$b := b_1 + b_2, \qquad b_1 \in \mathbf{K}_{\delta}^{d+1}, \ b_2 \in \mathbf{F}_{\delta}$$

(i.e. b combines critical point and critical hypersurface singularities)

The search for 'the right' class of critical drifts \boldsymbol{b}

The next step:

$$b := b_1 + b_2, \qquad b_1 \in \mathbf{K}_{\delta}^{d+1}, \ b_2 \in \mathbf{F}_{\delta}$$

(i.e. b combines critical point and critical hypersurface singularities)

The main obstacle: " $b \in \mathbf{F}_{\delta}$ " destroys Gaussian bounds,

The search for 'the right' class of critical drifts \boldsymbol{b}

The next step:

$$b := b_1 + b_2, \qquad b_1 \in \mathbf{K}_{\delta}^{d+1}, \ b_2 \in \mathbf{F}_{\delta}$$

(i.e. *b* combines critical point and critical hypersurface singularities)

The main obstacle: " $b \in \mathbf{F}_{\delta}$ " destroys Gaussian bounds, and " $b \in \mathbf{K}_{\delta}^{d+1}$ " destroys L^{p} -dissipativity (crucial for the existing proofs)
1. The two prominent classes of singular vector fields $\mathbf{K}_{\delta}^{d+1}$, \mathbf{F}_{δ} are responsible for two fundamental properties of $-\Delta + b \cdot \nabla$:

"Gaussian bounds", "dissipativity"

(both imply that $-\Delta + b \cdot \nabla$ generates a diffusion)

1. The two prominent classes of singular vector fields $\mathbf{K}_{\delta}^{d+1}$, \mathbf{F}_{δ} are responsible for two fundamental properties of $-\Delta + b \cdot \nabla$:

"Gaussian bounds", "dissipativity"

(both imply that $-\Delta + b \cdot \nabla$ generates a diffusion)

2. It is clear that neither $\mathbf{K}_{\delta}^{d+1}$ nor \mathbf{F}_{δ} is responsible for the property "to generate a diffusion" Part II: "A new hope"

arXiv:1502.07286, arxiv:1508:05983⁴

 $^{^4\}mathrm{Or}$ www.math.toronto.edu/dkinz

 $-\Delta + b \cdot \nabla$ generates a diffusion if it generates a strongly continuous semigroup in the Banach space $C_{\infty} := \{f \in C(\mathbb{R}^d) : f \text{ vanishes at } \infty\}$

 $-\Delta + b \cdot \nabla$ generates a diffusion if it generates a strongly continuous semigroup in the Banach space $C_{\infty} := \{f \in C(\mathbb{R}^d) : f \text{ vanishes at } \infty\}$

In other words, we solve the Cauchy problem

$$\partial_t u - \Delta u + b \cdot \nabla u = 0, \qquad u(0, \cdot) = f(\cdot) \in C_\infty$$

in C_{∞} , i.e. we must have strong continuity:

$$\lim_{t\downarrow 0} u(t,\cdot) = f(\cdot) \quad \text{ in } C_{\infty}$$

Strong continuity property in $C_{\infty} \Rightarrow$ the fundamental solution of $-\Delta + b \cdot \nabla$ is the transition (sub-) probability function of a diffusion

... a bridge between Probability and Analysis

The class of weakly form-bounded vector fields

$$\mathbf{F}_{\delta}^{\frac{1}{2}} := \{ b \in L^1_{\mathrm{loc}} : \left\| |b|^{\frac{1}{2}} (\lambda - \Delta)^{-\frac{1}{4}} \right\|_{2 \to 2} \leqslant \delta \},$$

Proposition:

$$\mathbf{F}_{\delta_1} + \mathbf{K}_{\delta_2}^{d+1} \subsetneq \mathbf{F}_{\delta}^{\frac{1}{2}}, \quad \delta := \delta_1 + \delta_2$$

Proof (easy): interpolation, Heinz-Kato inequality

Proposition:

$$\mathbf{F}_{\delta_1} + \mathbf{K}_{\delta_2}^{d+1} \subsetneq \mathbf{F}_{\delta}^{\frac{1}{2}}, \quad \delta := \delta_1 + \delta_2$$

Proof (easy): interpolation, Heinz-Kato inequality

Corollary:

 $\mathbf{F}_{\delta}^{rac{1}{2}}$ allows to combine critical point and critical hypersurface singularities

 $b\in {\bf F}_{\delta}^{\frac{1}{2}}$

 $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$

We need: C_{∞} -regularity theory of $-\Delta + b \cdot \nabla$, $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$

 L^2 -regularity theory of $-\Delta + b \cdot
abla$, $b \in \mathbf{F}_{\delta}^{rac{1}{2}}$ (JFA, Semenov, 2006)

 $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$

We need: C_{∞} -regularity theory of $-\Delta + b \cdot \nabla$, $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$

 L^2 -regularity theory of $-\Delta + b \cdot
abla$, $b \in \mathbf{F}_{\delta}^{rac{1}{2}}$ (JFA, Semenov, 2006)

Even in L^2 : KLMN theorem doesnt't apply

C_0 -semigroups (Kato, Yosida ...)

Let $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$

We need: an operator realization $\Lambda(b)$ of $-\Delta + b \cdot \nabla$ generating a (positivity preserving, contraction) C_0 -semigroup $T_t \in \mathcal{B}(C_\infty)$, i.e.

(1)
$$T_{t+s} = T_t T_s, T_0 = 1$$

(2) $T_t f \xrightarrow{s} T_s \text{ in } C_\infty \text{ as } t \to s, s \ge 0.$
(3) $\frac{d}{dt} T_t f = \Lambda(b) T_t f$

C_0 -semigroups (Kato, Yosida ...)

Let $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$

We need: an operator realization $\Lambda(b)$ of $-\Delta + b \cdot \nabla$ generating a (positivity preserving, contraction) C_0 -semigroup $T_t \in \mathcal{B}(C_\infty)$, i.e. (1) $T_{t+s} = T_t T_s$, $T_0 = 1$

(2)
$$T_t f \stackrel{s}{\to} T_s$$
 in C_{∞} as $t \to s, s \ge 0$.
(3) $\frac{d}{dt} T_t f = \Lambda(b) T_t f$

Precise meaning of 'generating':

$$\Lambda(b)f := \lim_{t \downarrow 0} \frac{T_t f - f}{t}, \quad f \in C_{\infty}$$

C_0 -semigroups (Kato, Yosida ...)

Let $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$

We need: an operator realization $\Lambda(b)$ of $-\Delta + b \cdot \nabla$ generating a (positivity preserving, contraction) C_0 -semigroup $T_t \in \mathcal{B}(C_\infty)$, i.e. (1) $T_{t+s} = T_t T_s$, $T_0 = 1$

(2)
$$T_t f \stackrel{\circ}{\to} T_s$$
 in C_{∞} as $t \to s, s \ge 0$.
(3) $\frac{d}{dt} T_t f = \Lambda(b) T_t f$

Precise meaning of 'generating':

$$\Lambda(b)f := \lim_{t \downarrow 0} \frac{T_t f - f}{t}, \quad f \in C_{\infty}$$

Denote $e^{-t\Lambda(b)} := T_t$

We will 'design' the resolvent

$$(\lambda + \Lambda(b))^{-1} \in \mathcal{B}(C_{\infty}), \quad \lambda > \lambda_0 > 0$$

of the required diffusion generator $\Lambda(b)$

Our starting object: an operator-valued function on L^p , p is in a bounded open interval depending on the relative bound δ ,

$$\Theta_p(\lambda, b) := (\lambda - \Delta)^{-1} - (\lambda - \Delta)^{-\frac{1}{2}} Q_p (1 + T_p)^{-1} G_p,$$

where

$$Q_p = (\lambda - \Delta)^{-\frac{1}{2}} |b|^{\frac{1}{p'}},$$
$$T_p = b^{\frac{1}{p}} \cdot \nabla(\lambda - \Delta)^{-1} |b|^{\frac{1}{p'}},$$
$$G_p = b^{\frac{1}{p}} \cdot \nabla(\lambda - \Delta)^{-1}, \qquad b^{\frac{1}{p}} := b|b|^{\frac{1}{p}-1}$$

Formally,

$$\Theta_p(\lambda, b) = \sum_{k=0}^{\infty} (-1)^k (\lambda - \Delta)^{-1} \underbrace{b \cdot \nabla(\lambda - \Delta)^{-1} \dots b \cdot \nabla(\lambda - \Delta)^{-1}}_{k \text{ times}}$$

where the RHS is the Neumann series for $(\lambda+\Lambda(b))^{-1}$

So, $\Theta_p(\lambda, b)$ is 'a candidate' for the resolvent $(\lambda + \Lambda(b))^{-1}!$

Our starting object: an operator-valued function on L^p

$$\Theta_p(\lambda, b) := (\lambda - \Delta)^{-1} - (\lambda - \Delta)^{-\frac{1}{2}} Q_p (1 + T_p)^{-1} G_p$$

Proposition: If $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$, then Q_p , T_p , $G_p \in \mathcal{B}(L^p)$

Proof: Using L^p -inequalitites between $(\lambda - \Delta)^{\frac{1}{2}}$ and 'potential' |b| (Liskevich-Semenov, 1996)⁵

 ${}^{5}\mathsf{Note:}\ \mathbf{K}_{\delta}^{d+1}\text{, }\mathbf{F}_{\delta}\text{ reduce everything to }-\Delta+b^{2}$

Our operator-valued function

$$\Theta_p(\lambda, b) := (\lambda - \Delta)^{-1} - (\lambda - \Delta)^{-\frac{1}{2}} Q_p (1 + T_p)^{-1} G_p$$

Our operator-valued function

$$\Theta_p(\lambda, b) := (\lambda - \Delta)^{-1} - (\lambda - \Delta)^{-\frac{1}{2}} Q_p (1 + T_p)^{-1} G_p$$

The key insight:

If the relative bound $\delta > 0$ (in $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$) is small, we can select p > d

Our operator-valued function

$$\Theta_p(\lambda, b) := (\lambda - \Delta)^{-1} - (\lambda - \Delta)^{-\frac{1}{2}} Q_p (1 + T_p)^{-1} G_p$$

The key insight:

If the relative bound $\delta > 0$ (in $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$) is small, we can select p > dThen by the Sobolev embedding theorem, $(\lambda - \Delta)^{-\frac{1}{2}}$ will map L^p to C_{∞} !

Our operator-valued function

$$\Theta_p(\lambda, b) := (\lambda - \Delta)^{-1} - (\lambda - \Delta)^{-\frac{1}{2}} Q_p (1 + T_p)^{-1} G_p$$

The key insight:

If the relative bound $\delta > 0$ (in $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$) is small, we can select p > dThen by the Sobolev embedding theorem, $(\lambda - \Delta)^{-\frac{1}{2}}$ will map L^p to C_{∞} ! So,

$$\Theta_p(\lambda, b)L^p \subset C_\infty$$

Now, to prove that

$$\Theta_p(\lambda, b_n)f \stackrel{s}{\to} \Theta_p(\lambda, b)f \quad \text{ in } C_{\infty}, \qquad f \in C_0^{\infty},$$

where b_n are bounded (smooth) approximations of b, we only need to work in L^p , p > d, a space having much weaker topology

Now, to prove that

$$\Theta_p(\lambda, b_n)f \xrightarrow{s} \Theta_p(\lambda, b)f$$
 in C_{∞} , $f \in C_0^{\infty}$,

where b_n are bounded (smooth) approximations of b, we only need to work in L^p , p > d, a space having much weaker topology

 \Rightarrow the gain in the admissible singularities of the drift

We had to 'dive in' into the L^p -theory of $-\Delta + b \cdot \nabla$

⁶Bass-Chen [Ann. Prob. 2003], Chen-Kin-Song [Ann. Prob. 2012]

We had to 'dive in' into the $L^p\text{-theory}$ of $-\Delta+b\cdot\nabla$

If we stay 6 in $C_\infty \Rightarrow b \in \mathbf{K}_{\delta}^{d+1}$

Note: \mathbf{K}_{0}^{d+1} ensures continuity of $abla e^{t\Lambda(b)}$

⁶Bass-Chen [Ann. Prob. 2003], Chen-Kin-Song [Ann. Prob. 2012]

1. Also provides a detailed L^p -regularity of $-\Delta + b \cdot \nabla$, e.g. characterizes smoothness of the domain of the generator in terms of $\delta > 0$ (in " $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$ ")

1. Also provides a detailed L^p -regularity of $-\Delta + b \cdot \nabla$, e.g. characterizes smoothness of the domain of the generator in terms of $\delta > 0$ (in " $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$ ")

2. Depends on the fact that $-\Delta$ and ∇ commute

1. Also provides a detailed L^p -regularity of $-\Delta + b \cdot \nabla$, e.g. characterizes smoothness of the domain of the generator in terms of $\delta > 0$ (in " $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$ ")

2. Depends on the fact that $-\Delta$ and ∇ commute \Rightarrow extension to non-local operators $(-\Delta)^{\frac{\alpha}{2}} + b \cdot \nabla$ (Levy processes ...)

1. Also provides a detailed L^p -regularity of $-\Delta + b \cdot \nabla$, e.g. characterizes smoothness of the domain of the generator in terms of $\delta > 0$ (in " $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$ ")

2. Depends on the fact that $-\Delta$ and ∇ commute \Rightarrow extension to non-local operators $(-\Delta)^{\frac{\alpha}{2}} + b \cdot \nabla$ (Levy processes ...)

3. $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$ (an L^1 -condition) can be a measure, e.g. Brownian motion drifting upward when penetrating certain fractal-like sets (using a variant of the Kato-Ponce inequality by Grafakos-Oh, CPDE, 2014)

1. Also provides a detailed L^p -regularity of $-\Delta + b \cdot \nabla$, e.g. characterizes smoothness of the domain of the generator in terms of $\delta > 0$ (in " $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$ ")

2. Depends on the fact that $-\Delta$ and ∇ commute \Rightarrow extension to non-local operators $(-\Delta)^{\frac{\alpha}{2}} + b \cdot \nabla$ (Levy processes ...)

3. $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$ (an L^1 -condition) can be a measure, e.g. Brownian motion drifting upward when penetrating certain fractal-like sets (using a variant of the Kato-Ponce inequality by Grafakos-Oh, CPDE, 2014)

4. . . .

$$||f||_{p,\infty} := \left(\sup_{t>0} t^p \mu\{|f(x)| > t\}\right)^{\frac{1}{p}}$$

$$\begin{split} \text{Since } \Theta_p(\lambda, b_n) f \xrightarrow{s} \Theta_p(\lambda, b) f & \text{ in } C_{\infty}, \qquad f \in C_0^{\infty}, \\ \underbrace{\|\Theta_p(\lambda, b_n)\|_{L^{\infty} \to L^{\infty}} \leqslant \lambda^{-1}}_{\text{'external' fact}} & \Rightarrow \quad \|\Theta_p(\lambda, b)f\|_{L^{\infty}} \leqslant \lambda^{-1} \|f\|_{L_{\infty}}, \end{split}$$

so we have a well defined the 'true candidate' for the resolvent:

$$\Theta(\lambda,b) := \left(\Theta_p(\lambda,b)|_{L^p \cap C_\infty}\right)_{C_\infty}^{\mathrm{cl}} \in \mathcal{B}(C_\infty)$$
$\Theta(\lambda, b)$ satisfies (same argument with the Sobolev embedding theorem)

 $\lambda \Theta(\lambda, b) \stackrel{s}{\rightarrow} 1$ in C_{∞} as $\lambda \uparrow \infty$

 \Rightarrow a pseudoresolvent $\Theta(\lambda, b)$ is the resolvent of a densely defined operator

 $\Theta(\lambda, b)$ satisfies (same argument with the Sobolev embedding theorem)

 $\lambda \Theta(\lambda, b) \stackrel{s}{\to} 1$ in C_{∞} as $\lambda \uparrow \infty$

 \Rightarrow a pseudoresolvent $\Theta(\lambda,b)$ is the resolvent of a densely defined operator Now,

$$\|\lambda\Theta(\lambda,b)\|_{L^{\infty}\to L^{\infty}} \leqslant 1$$

(proved in the last slide) \Rightarrow we can **define** $(\lambda + \Lambda(b))^{-1} := \Theta(\lambda, b)$