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The key component of many models of Math. Physics: Brownian motion

A trajectory of a three-dimensional Brownian motion

Brownian motion is modeled by Wiener process Wt (where t > 0, W0 = 0)

The simplest diffusion processes
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Brownian motion perturbed by a (singular) drift b : Rd → Rd?

Varadhan, Strook, Albeverio, Krylov, Carlen and many others . . .

The long search for the cricial singularities of the drift b . . .
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A bridge between Probability and Analysis

Probability Analysis

Wt ←→ −∆
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A bridge between Probability and Analysis

Precisely, given a realization Ws ∈ Rd, s < t, we have

P[Wt ∈ A]︸ ︷︷ ︸
Probability

= e(t−s)∆1A
(
Ws

)︸ ︷︷ ︸
Analysis

i.e. to find the probability we need to solve the heat equation

⇒ Analytic methods in Probability
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A bridge between Probability and Analysis

By analogy: let Xt be a Brownian motion perturbed by drift b : Rd → Rd
Then we must have

P[Xt ∈ A] =
(
e−(t−s)(−∆+b·∇)1A

)
(Xs), s < t

e.g. take b ≡ 0 ⇒ Xt = Wt

We can solve the heat equation for fairly singular b’s. But . . .
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A bridge between Probability and Analysis

. . . will the solutions of the heat equation determine a diffusion process?

The research program started in 1980s, closely tied to the progress in
PDEs, and continuing within emerging areas of Probability (SPDEs). . .
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What singularities of the drift are admissible?

d > 3
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The best possible result in terms of Lp-spaces

Denote Lp = Lp(Rd)
Stampacchia . . . Krylov, Röckner, Stannat and many others

Lp + L∞ (p > d)

Ld + L∞
OO

1

Counterexamples if p < d
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Critical drifts?

Example: A vector field having critical singularity

b(x) := x|x|−2, x ∈ R3

(clearly, b 6∈ Ld + L∞)

There is a diffusion process Xt with drift b. In fact, a weak solution of

dXt = x|x|−2dt+ dWt, X0 = 0

Replace x|x|−2 with (1 + ε)x|x|−2 and the process will cease to exist
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In other words, singularities of b are critical if they are sensitive to
multiplication by constants

The singularities of a b ∈ Ld are sub-critical
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The classes of critical vector fields previously studied in the literature
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Critical point singularities of the drift

The class of form-bounded vector fields1

Fδ :=

{
b ∈ L2

loc : lim
λ↑∞

∥∥|b|(λ−∆)−
1
2

∥∥
L2→L2 6

√
δ

}
Example: b(x) =

√
δ d−2

2 x|x|−2 (Hardy inequality)

Fδ is ‘responsible’ for dissipativity of −∆ + b · ∇ in Lp

⇒ a diffusion via a Moser-type iterative procedure of Kovalenko-Semenov

1In relatively elementary terms: Kerman-Sawyer, Chang-Wilson-Wolff
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Critical hypersurface singularities of the drift

The Kato class of vector fields

Kd+1
δ :=

{
b ∈ L1

loc : lim
λ↑∞

∥∥|b|(λ−∆)−
1
2

∥∥
L1→L1 6 δ

}

Example:
|b(x)| =

∣∣|x| − 1
∣∣−γ , γ < 1

is in Kd+1
0

Kd+1
δ is ‘responsible’ for the Gaussian bounds2 for −∆ + b · ∇

⇒ the Gaussian bounds yield a diffusion

2Yu. Semenov, Q. S. Zhang, B. Davies . . . earlier, J. Nash, . . .
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Classes Kd+1
δ and Fδ play prominent role in Analysis

Crucial features:

– Defined in terms of the operators that constitute the problem3

– Are integral conditions, i.e. the geometry of the singularities is not
important (well, . . . ) . . . realizations of random fields (SHE)

– What really matters is the relative bound δ > 0 (as in δx|x|−2; has to
be small, so that b · ∇ ≤ −∆). For instance, Ld ⊂ F0 :=

⋂
δ>0 Fδ.

– Are L1, L2-conditions (e.g. Kato class of measure-valued drifts:
Bass-Chen, Kim-Song), cf. “b ∈ Ld”

3This intuition worked, in particular, in unique continuation for Schrödinger operators
with form-bounded potentials (Kinzebulatov-Shartser, JFA, 2010)
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The state of affairs (not so long ago)

Lp + L∞ (p > d)

Ld + L∞
II���������

Ld + L∞

Ld,∞ + L∞
II��������

Ld,∞ + L∞

FδII��������

Lp + L∞ (p > d)

Kd+1
δ UU,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

1
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The search for ‘the right’ class of critical drifts b

The next step:

b := b1 + b2, b1 ∈ Kd+1
δ , b2 ∈ Fδ

(i.e. b combines critical point and critical hypersurface singularities)

The main obstacle: “b ∈ Fδ” destroys Gaussian bounds, and
“b ∈ Kd+1

δ ” destroys Lp-dissipativity (crucial for the existing proofs)
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To summarize (so far)

1. The two prominent classes of singular vector fields Kd+1
δ , Fδ are

responsible for two fundamental properties of −∆ + b · ∇:

“Gaussian bounds”, “dissipativity”

(both imply that −∆ + b · ∇ generates a diffusion)

2. It is clear that neither Kd+1
δ nor Fδ is responsible for the property

“to generate a diffusion”
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Part II: “A new hope”

arXiv:1502.07286, arxiv:1508:059834

4Or www.math.toronto.edu/dkinz
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From an analyst perspective

−∆ + b · ∇ generates a diffusion if it generates a strongly continuous
semigroup in the Banach space C∞ := {f ∈ C(Rd) : f vanishes at ∞}

In other words, we solve the Cauchy problem

∂tu−∆u+ b · ∇u = 0, u(0, ·) = f(·) ∈ C∞

in C∞, i.e. we must have strong continuity:

lim
t↓0

u(t, ·) = f(·) in C∞
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A theorem in Probability

Strong continuity property in C∞ ⇒ the fundamental solution of
−∆ + b · ∇ is the transition (sub-) probability function of a diffusion

. . . a bridge between Probability and Analysis
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“A new hope”

The class of weakly form-bounded vector fields

F
1
2
δ := {b ∈ L1

loc :
∥∥|b| 12 (λ−∆)−

1
4

∥∥
2→2

6 δ},
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Weakly form-bounded vector fields

Proposition:

Fδ1 + Kd+1
δ2

( F
1
2
δ , δ := δ1 + δ2

Proof (easy): interpolation, Heinz-Kato inequality

Corollary:

F
1
2
δ allows to combine critical point and critical hypersurface singularities
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Weakly form-bounded vector fields

The state of affairs as of today

Lp + L∞ (p > d)

Ld + L∞
II���������

Ld + L∞

Ld,∞ + L∞
II��������

Ld,∞ + L∞

FδII��������

Lp + L∞ (p > d)

Kd+1
δ UU,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fδ

F
1
2
δ bbDDDDDDDDDDDD

Kd+1
δ

F
1
2
δ<<zzzzzzzzzzz
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Weakly form-bounded vector fields

b ∈ F
1
2
δ

We need: C∞-regularity theory of −∆ + b · ∇, b ∈ F
1
2
δ

L2-regularity theory of −∆ + b · ∇, b ∈ F
1
2
δ (JFA, Semenov, 2006)

Even in L2: KLMN theorem doesnt’t apply
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C0-semigroups (Kato, Yosida . . . )

Let b ∈ F
1
2
δ

We need: an operator realization Λ(b) of −∆ + b · ∇ generating a
(positivity preserving, contraction) C0-semigroup Tt ∈ B(C∞), i.e.

(1) Tt+s = TtTs, T0 = 1

(2) Ttf
s→ Ts in C∞ as t→ s, s > 0.

(3) d
dtTtf = Λ(b)Ttf

Precise meaning of ‘generating’:

Λ(b)f := lim
t↓0

Ttf − f
t

, f ∈ C∞

Denote e−tΛ(b) := Tt
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We will ‘design’ the resolvent

(λ+ Λ(b))−1 ∈ B(C∞), λ > λ0 > 0

of the required diffusion generator Λ(b)
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A new approach: ‘designing the resolvent’

Our starting object: an operator-valued function on Lp, p is in a
bounded open interval depending on the relative bound δ,

Θp(λ, b) := (λ−∆)−1 − (λ−∆)−
1
2Qp(1 + Tp)

−1Gp,

where
Qp = (λ−∆)−

1
2 |b|

1
p′ ,

Tp = b
1
p · ∇(λ−∆)−1|b|

1
p′ ,

Gp = b
1
p · ∇(λ−∆)−1, b

1
p := b|b|

1
p
−1

28 / 34



Formally,

Θp(λ, b) =

∞∑
k=0

(−1)k(λ−∆)−1 b · ∇(λ−∆)−1 . . . b · ∇(λ−∆)−1︸ ︷︷ ︸
k times

where the RHS is the Neumann series for (λ+ Λ(b))−1

So, Θp(λ, b) is ‘a candidate’ for the resolvent (λ+ Λ(b))−1!
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A new approach: ‘designing the resolvent’

Our starting object: an operator-valued function on Lp

Θp(λ, b) := (λ−∆)−1 − (λ−∆)−
1
2Qp(1 + Tp)

−1Gp

Proposition: If b ∈ F
1
2
δ , then Qp, Tp, Gp ∈ B(Lp)

Proof: Using Lp-inequalitites between (λ−∆)
1
2 and ‘potential’ |b|

(Liskevich-Semenov, 1996)5

5Note: Kd+1
δ , Fδ reduce everything to −∆ + b2
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A new approach: ‘designing the resolvent’

Our operator-valued function

Θp(λ, b) := (λ−∆)−1 − (λ−∆)−
1
2Qp(1 + Tp)

−1Gp

The key insight:

If the relative bound δ > 0 (in b ∈ F
1
2
δ ) is small, we can select p > d

Then by the Sobolev embedding theorem, (λ−∆)−
1
2 will map Lp to C∞!

So,
Θp(λ, b)L

p ⊂ C∞
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A new approach: ‘designing the resolvent’

Now, to prove that

Θp(λ, bn)f
s→ Θp(λ, b)f in C∞, f ∈ C∞0 ,

where bn are bounded (smooth) approximations of b, we only need to work
in Lp, p > d, a space having much weaker topology

⇒ the gain in the admissible singularities of the drift
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A new approach: ‘designing the resolvent’

We had to ‘dive in’ into the Lp-theory of −∆ + b · ∇

If we stay6 in C∞ ⇒ b ∈ Kd+1
δ

Note: Kd+1
0 ensures continuity of ∇etΛ(b)

6Bass-Chen [Ann. Prob. 2003], Chen-Kin-Song [Ann. Prob. 2012]
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Concluding remarks

This method:

1. Also provides a detailed Lp-regularity of −∆ + b · ∇, e.g. characterizes

smoothness of the domain of the generator in terms of δ > 0 (in “b ∈ F
1
2
δ ”)

2. Depends on the fact that −∆ and ∇ commute ⇒ extension to
non-local operators (−∆)

α
2 + b · ∇ (Levy processes . . . )

3. b ∈ F
1
2
δ (an L1-condition) can be a measure, e.g. Brownian motion

drifting upward when penetrating certain fractal-like sets (using a variant
of the Kato-Ponce inequality by Grafakos-Oh, CPDE, 2014)

4. . . .
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non-local operators (−∆)

α
2 + b · ∇ (Levy processes . . . )

3. b ∈ F
1
2
δ (an L1-condition) can be a measure, e.g. Brownian motion

drifting upward when penetrating certain fractal-like sets (using a variant
of the Kato-Ponce inequality by Grafakos-Oh, CPDE, 2014)
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‖f‖p,∞ :=

(
supt>0 tpµ

{
|f(x)| > t

}) 1
p
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A new approach: ‘designing the resolvent’

Since Θp(λ, bn)f
s→ Θp(λ, b)f in C∞, f ∈ C∞0 ,

‖Θp(λ, bn)‖L∞→L∞ 6 λ−1︸ ︷︷ ︸
‘external’ fact

⇒ ‖Θp(λ, b)f‖L∞ 6 λ−1‖f‖L∞ ,

so we have a well defined the ‘true candidate’ for the resolvent:

Θ(λ, b) :=
(
Θp(λ, b)|Lp∩C∞

)cl

C∞
∈ B(C∞)
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A new approach: ‘designing the resolvent’

Θ(λ, b) satisfies (same argument with the Sobolev embedding theorem)

λΘ(λ, b)
s→ 1 in C∞ as λ ↑ ∞

⇒ a pseudoresolvent Θ(λ, b) is the resolvent of a densely defined operator

Now,

‖λΘ(λ, b)‖L∞→L∞ 6 1

(proved in the last slide) ⇒ we can define (λ+ Λ(b))−1 := Θ(λ, b)
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