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The key component of many models of Math. Physics: Brownian motion

A trajectory of a three-dimensional Brownian motion

Brownian motion is modeled by Wiener process W; (where ¢t > 0, Wy = 0)
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The key component of many models of Math. Physics: Brownian motion

A trajectory of a three-dimensional Brownian motion

Brownian motion is modeled by Wiener process W; (where ¢t > 0, Wy = 0)

The simplest diffusion processes
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Brownian motion perturbed by a (singular) drift b : RY — R4?
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Brownian motion perturbed by a (singular) drift b : R — R%?
Varadhan, Strook, Albeverio, Krylov, Carlen and many others ...

The long search for the cricial singularities of the drift b ...
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A bridge between Probability and Analysis

Probability Analysis

Wy — —A
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A bridge between Probability and Analysis

Precisely, given a realization Wy € R, s < t, we have

P(W; € A] = =921 4, (W)

Probability Analysis

i.e. to find the probability we need to solve the heat equation
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A bridge between Probability and Analysis

Precisely, given a realization Wy € R, s < t, we have

P(W; € A] = =921 4, (W)

Probability Analysis

i.e. to find the probability we need to solve the heat equation

= Analytic methods in Probability
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A bridge between Probability and Analysis

By analogy: let X; be a Brownian motion perturbed by drift b : RY — R¢
Then we must have

PX; € A] = (e- AV ) (Xy),  s<t
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A bridge between Probability and Analysis

By analogy: let X; be a Brownian motion perturbed by drift b : RY — R¢
Then we must have

P[X, € A] = (e—(t—s)(—A+b.V)1A) (X,), s <t

eg. takeb=0= Xy =W,

We can solve the heat equation for fairly singular b's. But ...
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A bridge between Probability and Analysis

... will the solutions of the heat equation determine a diffusion process?
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A bridge between Probability and Analysis

... will the solutions of the heat equation determine a diffusion process?

The research program started in 1980s, closely tied to the progress in
PDEs, and continuing within emerging areas of Probability (SPDEs). ..
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What singularities of the drift are admissible?
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What singularities of the drift are admissible?
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The best possible result in terms of LP-spaces

Denote LP = LP(R%)

Stampacchia ... Krylov, Rockner, Stannat and many others

L4 4+ [®

LP+L® (p>d)
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Critical drifts?

Example: A vector field having critical singularity
b(z) :=z|z| 2, zeR?

(clearly, b ¢ L + L)
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Critical drifts?

Example: A vector field having critical singularity
b(z) :=z|z| 2, zeR3
(clearly, b ¢ LY + L>)
There is a diffusion process X; with drift b. In fact, a weak solution of

dX; = x|z|2dt + dW;, Xo =0
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Critical drifts?

Example: A vector field having critical singularity
b(z) :=z|z| 2, zeR3
(clearly, b & L + L™)
There is a diffusion process X; with drift b. In fact, a weak solution of
dX; = x|z|2dt + dW;, Xo =0

Replace z|z|~2 with (1 + ¢)z|z|~2 and the process will cease to exist
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In other words, singularities of b are critical if they are sensitive to
multiplication by constants
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In other words, singularities of b are critical if they are sensitive to
multiplication by constants

The singularities of a b € L¢ are sub-critical
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The classes of critical vector fields previously studied in the literature
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Critical point singularities of the drift

The class of form-bounded vector fields!
L 2 - _1
Py = {be s 13 = ) oy < V)

Example: b(z) = V6%2z|z|~2  (Hardy inequality)

In relatively elementary terms: Kerman-Sawyer, Chang-Wilson-Wolff
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Critical point singularities of the drift

The class of form-bounded vector fields!

Fs = {b €Li.: /{iT?OH|b|()\ ~A)73 | o ys < \/5}
Example: b(z) = V6%2z|z|~2  (Hardy inequality)
Fs is ‘responsible’ for dissipativity of —A +b-V in LP

= a diffusion via a Moser-type iterative procedure of Kovalenko-Semenov

In relatively elementary terms: Kerman-Sawyer, Chang-Wilson-Wolff
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Critical hypersurface singularities of the drift

The Kato class of vector fields

N

Kot .— {b €L, : hmH|b| (A=A4A) _7HL1—>L1

g

2Yu. Semenov, Q. S. Zhang, B. Davies ...earlier, J. Nash, ...
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Critical hypersurface singularities of the drift

The Kato class of vector fields

Kt = {b € Li.: hmH|b| (A—A)"2

N

Moo <0

Example:
()| = [l =177, y<1
is in Kgt

2Yu. Semenov, Q. S. Zhang, B. Davies ...earlier, J. Nash, ...
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Critical hypersurface singularities of the drift

The Kato class of vector fields

Kt = {b € Li.: hmH|b| (A—A)"2

N

HL1—>L1

g

Example:
b(@) = [lel =177, v <1
is in K&
Kg“ is ‘responsible’ for the Gaussian bounds? for —A +b -V

= the Gaussian bounds yield a diffusion

2Yu. Semenov, Q. S. Zhang, B. Davies ...earlier, J. Nash, ...
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Classes Kg“ and Fy play prominent role in Analysis

Crucial features:

— Defined in terms of the operators that constitute the problem?

3This intuition worked, in particular, in unique continuation for Schrédinger operators

with form-bounded potentials (Kinzebulatov-Shartser, JFA, 2010)
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Crucial features:
— Defined in terms of the operators that constitute the problem?

— Are integral conditions, i.e. the geometry of the singularities is not
important (well, ...) ...realizations of random fields (SHE)
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Classes K%t and F; play prominent role in Analysis
5 y y

Crucial features:

— Defined in terms of the operators that constitute the problem?

— Are integral conditions, i.e. the geometry of the singularities is not
important (well, ...) ...realizations of random fields (SHE)

— What really matters is the relative bound § > 0 (as in dz|z|~2; has to
be small, so that b-V < —A). For instance, L? C F := Ns>0 Fs-

3This intuition worked, in particular, in unique continuation for Schrédinger operators
with form-bounded potentials (Kinzebulatov-Shartser, JFA, 2010)
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Classes ng+1 and Fy play prominent role in Analysis

Crucial features:

— Defined in terms of the operators that constitute the problem?

— Are integral conditions, i.e. the geometry of the singularities is not
important (well, ...) ...realizations of random fields (SHE)

— What really matters is the relative bound § > 0 (as in dz|z|~2; has to
be small, so that b-V < —A). For instance, L? C F := Ns>0 Fs-

— Are L', L2-conditions (e.g. Kato class of measure-valued drifts:
Bass-Chen, Kim-Song), cf. “b € L

3This intuition worked, in particular, in unique continuation for Schrédinger operators
with form-bounded potentials (Kinzebulatov-Shartser, JFA, 2010)
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The state of affairs (not so long ago)

Kg"v‘l F5

LP 4+ L™ (p>d)
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The search for ‘the right' class of critical drifts b

The next step:

b:= by + bo, b € KT by € Fs

(i.e. b combines critical point and critical hypersurface singularities)
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The search for ‘the right' class of critical drifts b

The next step:

b:= by + bo, b € KT by € Fs

(i.e. b combines critical point and critical hypersurface singularities)

The main obstacle: “b € Fs" destroys Gaussian bounds, and
“b e Kg“” destroys LP-dissipativity (crucial for the existing proofs)
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To summarize (so far)

1. The two prominent classes of singular vector fields Kg“, Fs are
responsible for two fundamental properties of —A +b- V:

“Gaussian bounds”, “dissipativity”

(both imply that —A + b -V generates a diffusion)

18 / 34



To summarize (so far)

1. The two prominent classes of singular vector fields Kgl“, Fs are
responsible for two fundamental properties of —A +b- V:

“Gaussian bounds”, “dissipativity”

(both imply that —A + b -V generates a diffusion)

2. It is clear that neither Kgl“ nor Fs is responsible for the property

“to generate a diffusion”
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Part Il: “A new hope”

arXiv:1502.07286, arxiv:1508:05983*

4Or www.math.toronto.edu/dkinz
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From an analyst perspective

—A + b -V generates a diffusion if it generates a strongly continuous
semigroup in the Banach space Cy, := {f € C(R?) : f vanishes at oo}
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From an analyst perspective

—A + b -V generates a diffusion if it generates a strongly continuous
semigroup in the Banach space Cy, := {f € C(R?) : f vanishes at oo}

In other words, we solve the Cauchy problem
O —Au+b-Vu=0, u(0,-) = f(+) € Cxo

in Coo, i.e. we must have strong continuity:

lgjglu(t, J)=f() inCx
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A theorem in Probability

Strong continuity property in C = the fundamental solution of
—A + bV is the transition (sub-) probability function of a diffusion

...a bridge between Probability and Analysis
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“A new hope”

The class of weakly form-bounded vector fields

—{beLb.:||pz(A—A)"7 < 6},

H2—>2
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Weakly form-bounded vector fields

Proposition:
1
Fs, + KL CFZ 6:=61+0,

Proof (easy): interpolation, Heinz-Kato inequality
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Weakly form-bounded vector fields

Proposition:
1
Fs, + KL CFZ 6:=61+0,

Proof (easy): interpolation, Heinz-Kato inequality

Corollary:

1
F} allows to combine critical point and critical hypersurface singularities
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Weakly form-bounded vector fields

The state of affairs as of today

N
/

Ld,oo 4+ [>®

/

Lt 4 L™

/

LP + L™ (p > d)

d+1
Ks
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Weakly form-bounded vector fields

1
becF;
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Weakly form-bounded vector fields

1
beF;
1
We need: C.-regularity theory of —A +b-V, b€ F}

1
L?-regularity theory of —A +b-V, b € FZ (JFA, Semenov, 2006)
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Weakly form-bounded vector fields

1
beF;
1
We need: C.-regularity theory of —A +b-V, b€ F}

1
L?-regularity theory of —A +b-V, b € FZ (JFA, Semenov, 2006)

Even in L?: KLMN theorem doesnt't apply
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Co-semigroups (Kato, Yosida .. .)

1
Let b € F§

We need: an operator realization A(b) of —A + b -V generating a
(positivity preserving, contraction) Cy-semigroup T € B(C), i.e.
(1) T4s = TiTs, Tn = 1

(2 Tyf > TsinCoast— s, s>0.

3) #Tif = AD)T: f
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1
Let b € F§

We need: an operator realization A(b) of —A + b -V generating a
(positivity preserving, contraction) Cy-semigroup T € B(C), i.e.
(1) T4s = TiTs, Tn = 1

(2 Tyf > TsinCoast— s, s>0.

(3) GTif = AOTLS

Precise meaning of ‘generating’:

L= f
A(b)f .-l;f{r)l a— felx
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Co-semigroups (Kato, Yosida .. .)

1
Let b € F§

We need: an operator realization A(b) of —A + b -V generating a
(positivity preserving, contraction) Cy-semigroup T € B(C), i.e.

(1) Tips = TyTs, Ty = 1
(2 Tyf > TsinCoast— s, s>0.
(3) GTf = ADT:f

Precise meaning of ‘generating’:

L= f
M@ﬂ—%g P

f €l

Denote e~ *A0) .= T
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We will ‘design’ the resolvent
A+AD) P eB(Csx), A>X>0

of the required diffusion generator A(b)
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A new approach: ‘designing the resolvent’

Our starting object: an operator-valued function on LP, p isin a
bounded open interval depending on the relative bound 9,

O,(\b) i=(A—A) T — (A= A)2Q,(1+T,) 'G,,

where

1,1
Qp=(\—A)"2 b7,
T, = bv - V(A — A) 7|7,

1 1 1 1
Gp=0br -V(A-A)"", br := b|b|»
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Formally,

i VA=A b V(A=A
k=0

k times

where the RHS is the Neumann series for (A + A(b)) !

So, ©,(\,b) is ‘a candidate’ for the resolvent (A + A(b))~!
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A new approach: ‘designing the resolvent’

Our starting object: an operator-valued function on LP

O,(Ab) = (A= A) = (A= A)2Q,(1 +T,)'G,

1
Proposition: If b € 7, then Q,, T),, G, € B(LP)

Proof: Using LP-inequalitites between (A — A)% and ‘potential’ |b]
(Liskevich-Semenov, 1996)°

*Note: Kg“, F; reduce everything to —A 4 b?
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A new approach: ‘designing the resolvent’

Our operator-valued function

0,(A\b) = (A—A) = (A= A)2Q,(1+T,) G,
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A new approach: ‘designing the resolvent’

Our operator-valued function
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The key insight:

1
If the relative bound § > 0 (in b € F}) is small, we can select p > d
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The key insight:

1
If the relative bound § > 0 (in b € F}) is small, we can select p > d
Then by the Sobolev embedding theorem, (A — A)_% will map LP to Cy!
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A new approach: ‘designing the resolvent’

Our operator-valued function

O,(\b) = (A= A) " = (A= A)2Q,(1+T))'G,

The key insight:

1
If the relative bound § > 0 (in b € F}) is small, we can select p > d
Then by the Sobolev embedding theorem, (A — A)_% will map LP to Cy!

So,
©,(\,b)LP C Cy
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A new approach: ‘designing the resolvent’

Now, to prove that
Op(\, b)) f > 6,(\b)f in Cu, f ey,

where b,, are bounded (smooth) approximations of b, we only need to work
in L?, p > d, a space having much weaker topology
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A new approach: ‘designing the resolvent’

Now, to prove that
Op(\, b)) f > 6,(\b)f in Cu, f ey,

where b,, are bounded (smooth) approximations of b, we only need to work
in L?, p > d, a space having much weaker topology

= the gain in the admissible singularities of the drift
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A new approach: ‘designing the resolvent’

We had to ‘dive in’ into the LP-theory of —A+b-V

®Bass-Chen [Ann. Prob. 2003], Chen-Kin-Song [Ann. Prob. 2012]
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A new approach: ‘designing the resolvent’

We had to ‘dive in’ into the LP-theory of —A+b-V

If we stayS in Coo = b€ K§™

Note: K™ ensures continuity of Ve!A(®)

®Bass-Chen [Ann. Prob. 2003], Chen-Kin-Song [Ann. Prob. 2012]
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Concluding remarks

This method:

1. Also provides a detailed LP-regularity of —A + b -V, e.g. characterizes
1

smoothness of the domain of the generator in terms of § > 0 (in “b € F}")
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Concluding remarks

This method:

1. Also provides a detailed LP-regularity of —A + b -V, e.g. characterizes
1

smoothness of the domain of the generator in terms of § > 0 (in “b € F}")

2. Depends on the fact that —A and V commute = extension to
non-local operators (—A)2 +b-V (Levy processes ...)

1
3.beF; (an L'-condition) can be a measure, e.g. Brownian motion
drifting upward when penetrating certain fractal-like sets (using a variant
of the Kato-Ponce inequality by Grafakos-Oh, CPDE, 2014)

4. ...
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A new approach: ‘designing the resolvent’

Since ©,(\,b,)f = O,(A\,b)f  in O, fecs,

10p(A, ba)llLere KA = 05N 0) fllroe < AT fllLcos

-~

‘external’ fact

so we have a well defined the ‘true candidate’ for the resolvent:

O(A,b) == (6,(\. b)|roncn ). € B(Cno)
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A new approach: ‘designing the resolvent’

©(A, b) satisfies (same argument with the Sobolev embedding theorem)

AO(N,b) 31 inCyp as AT oo

= a pseudoresolvent O(A, b) is the resolvent of a densely defined operator
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A new approach: ‘designing the resolvent’

©(A, b) satisfies (same argument with the Sobolev embedding theorem)
AO(N,b) 31 inCyp as AT oo
= a pseudoresolvent O(A, b) is the resolvent of a densely defined operator

Now,

IAO(N, D) || oo < 1
(proved in the last slide) = we can define (A + A(b))~! := O(\,b)
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