On a problem of E. Meckes for the unitary eigenvalue process on an arc Midwestern Workshop on Asymptotic Analysis

Liudmyla Kryvonos (joint work with Ed Saff)

Vanderbilt University

October 11-13 2024

October 11-13 2024 1/26

Recall that $n \times n$ matrix *U* over $\mathbb C$ is **unitary** if

$$
UU^* = U^*U = I_n
$$

∢ ロ ▶ ∢ 何

Recall that $n \times n$ matrix U over $\mathbb C$ is **unitary** if

$$
UU^* = U^*U = I_n
$$

Consider a Haar-distributed random unitary matrix U_n , $n \in \mathbb{N}$, and denote its eigenvalues by $\{e^{i\theta_1}, e^{i\theta_2}, \dots, e^{i\theta_n}\}.$

Recall that $n \times n$ matrix U over $\mathbb C$ is **unitary** if

$$
UU^* = U^*U = I_n
$$

Consider a Haar-distributed random unitary matrix U_n , $n \in \mathbb{N}$, and denote its eigenvalues by $\{e^{i\theta_1}, e^{i\theta_2}, \dots, e^{i\theta_n}\}.$

Fix $\theta \in (0, 2\pi)$, and let

$$
\mathcal{N}_{\theta} := \#\{j : 0 < \theta_j < \theta\}.
$$

The set of eigenvalues is a *determinantal point process*, meaning that there exists a kernel $K_n : [0, 2\pi] \times [0, 2\pi] \rightarrow [0, 1]$ such that, for pairwise disjoint subsets $A_1, ..., A_k \subset [0, 2\pi]$,

$$
\mathbb{E}\bigg[\prod_{j=1}^k \mathcal{N}_{A_i}\bigg] = \int_{A_1} \ldots \int_{A_k} \det[K_n(x_i,x_j)]_{i,j=1}^k d\mu(x_1) \ldots d\mu(x_k),
$$

 209

イロト イ押 トイヨ トイヨ トー

The set of eigenvalues is a *determinantal point process*, meaning that there exists a kernel $K_n : [0, 2\pi] \times [0, 2\pi] \rightarrow [0, 1]$ such that, for pairwise disjoint subsets $A_1, ..., A_k \subset [0, 2\pi]$,

$$
\mathbb{E}\bigg[\prod_{j=1}^k \mathcal{N}_{A_i}\bigg] = \int_{A_1} \ldots \int_{A_k} \det[K_n(x_i,x_j)]_{i,j=1}^k d\mu(x_1) \ldots d\mu(x_k),
$$

where the kernel K_n is given by

k

$$
K_n(x, y) := \begin{cases} \sin(\frac{n(x-y)}{2}) / \sin(\frac{(x-y)}{2}), & \text{if } x - y \neq 0, \\ n, & \text{if } x - y = 0. \end{cases}
$$

Figure 3.1 On the left are the eigenvalues of an 80×80 random unitary matrix; on the right are 80 i.i.d. uniform random points.

4 D F

Theorem (J. B. Hough, M. Krishnapur, Y. Peres, and B. Virág, [\[1\]](#page-43-0))

Let X *be a DPP on a compact metric measure space* (Λ, µ) *with kernel* $K: \Lambda \times \Lambda \rightarrow \mathbb{C}$ *. Suppose that*

$$
\mathcal{K}(f)(x) = \int K(x, y)f(y)d\mu(y), \quad f \in L^{2}(\mu)
$$

is self-adjoint, nonnegative, and locally trace-class with eigenvalues in [0,1].

Let $K_D(x, y) = I_D(x)K(x, y)I_D(y)$ *be the restriction of K to D* $\subset \Lambda$ *. Denote by* $\{p_i\}_{i \in A}$ *the eigenvalues of* $\mathcal{K}_D(x, y)$ *and by* \mathcal{N}_D *the number of particles of the DPP which lie in D. Then*

$$
\mathcal{N}_D \stackrel{d}{=} \sum_{j \in \mathcal{A}} \xi_j,
$$

where ξ_i *are independent Bernoulli random variables with* $P[\xi_i = 1] = p_i$ *and* $P[\xi_j = 0] = 1 - p_j.$

(□) (何) (∃) (∃)

 QQ

Motivation: Meckes' problem

By the theorem above,

$$
\mathcal{N}_{\theta} \stackrel{d}{=} \sum_{j=1}^{n} \xi_j,
$$

where $\mathbb{P}[\xi_j = 1] = p_j$ and $\mathbb{P}[\xi_j = 0] = 1 - p_j$.

 \leftarrow \Box \rightarrow \leftarrow \Box

 2990

舌

Motivation: Meckes' problem

By the theorem above,

$$
\mathcal{N}_{\theta} \stackrel{d}{=} \sum_{j=1}^{n} \xi_j,
$$

where $\mathbb{P}[\xi_j = 1] = p_j$ and $\mathbb{P}[\xi_j = 0] = 1 - p_j$.

Question (E. Meckes)

What are the asymptotics for p_i near zero?

∢ □ ▶ ⊣ nP

Lemma (D. Slepian, 1978)

i) for any fixed $\rho \in (0, 1)$, there exist constants $c_0 = c_0(\rho)$, $n_0 = n_0(\rho)$ such *that*

$$
p_j(n) \ge 1 - e^{-c_0 n}
$$
 for all $j \le \frac{n\theta}{2\pi}(1-\rho)$ and all $n \ge n_0$;

ii) for any fixed $\rho \in (0, 2\pi/\theta - 1)$ *there exist constants* $c_1 = c_1(\rho)$ *,* $n_1 = n_1(\rho)$ *such that*

$$
p_j(n) \leq e^{-c_1 n}
$$
 for all $j \geq \frac{n\theta}{2\pi}(1+\rho)$ and all $n \geq n_1$.

 Ω

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

Lemma (D. Slepian, 1978)

i) for any fixed $\rho \in (0, 1)$, there exist constants $c_0 = c_0(\rho)$, $n_0 = n_0(\rho)$ such *that*

$$
p_j(n) \ge 1 - e^{-c_0 n}
$$
 for all $j \le \frac{n\theta}{2\pi}(1-\rho)$ and all $n \ge n_0$;

ii) for any fixed $\rho \in (0, 2\pi/\theta - 1)$ there exist constants $c_1 = c_1(\rho)$, $n_1 = n_1(\rho)$ *such that*

$$
p_j(n) \leq e^{-c_1 n}
$$
 for all $j \geq \frac{n\theta}{2\pi}(1+\rho)$ and all $n \geq n_1$.

For *K* large and fixed, and $\lambda \in \mathbb{R}$, consider

$$
G(\lambda, n) := \#\{j : p_j > Ke^{-\lambda n}\}.
$$

Our goal is to understand $G(\lambda, n)$ as a function of λ and *n*.

Theorem (K.-Saff, 2023)

For any fixed $\varepsilon > 0$ *,*

$$
\frac{1}{2\varepsilon}\int_{\lambda-\varepsilon}^{\lambda+\varepsilon} |G(x,n)|dx = \frac{n}{2\varepsilon}(\Lambda(\lambda+\varepsilon)-\Lambda(\lambda-\varepsilon)) - o(n),
$$

where the function $\Lambda(\lambda) = \sup \{q\lambda - I(q)\}$ *is given by the q*∈[0,1] *Fenchel-Legendre transform of the function I. In particular, if* $\lambda \geq C$ *, where C is explicitly known constant, then*

$$
\frac{1}{2\varepsilon}\int_{\lambda-\varepsilon}^{\lambda+\varepsilon} |G(x,n)| dx = n - o(n).
$$

October 11-13 2024 8 / 26

 Ω

イロト イ押 トイヨ トイヨ トーヨ

Large deviation principle

Definition

A sequence of Borel measures ${P_n}$ on a topological space *X* satisfies a large deviation principle (LDP) with rate function *I* and speed *sⁿ* if for all Borel sets B ⊆ *X*,

$$
-\inf_{x\in\mathcal{B}^0} I(x) \le \liminf_{n\to\infty} \frac{1}{s_n} \log(P_n(\mathcal{B})) \le \limsup_{n\to\infty} \frac{1}{s_n} \log(P_n(\mathcal{B})) \le -\inf_{x\in\overline{\mathcal{B}}} I(x)
$$

∢ □ ▶ ⊣ nP

Large deviation principle

Definition

A sequence of Borel measures ${P_n}$ on a topological space *X* satisfies a large deviation principle (LDP) with rate function *I* and speed *sⁿ* if for all Borel sets B ⊆ *X*,

$$
-\inf_{x\in\mathcal{B}^0} I(x) \le \liminf_{n\to\infty} \frac{1}{s_n} \log(P_n(\mathcal{B})) \le \limsup_{n\to\infty} \frac{1}{s_n} \log(P_n(\mathcal{B})) \le -\inf_{x\in\overline{\mathcal{B}}} I(x)
$$

Example. Let $X_1, X_2, ...$ be a sequence of i.i.d. with law P and mean m. Then, by the law of large numbers,

$$
S_n:=\frac{X_1+X_2+\ldots+X_n}{n}\quad\longrightarrow_{n\to\infty} m.
$$

For $x > m$ we get

$$
\mathbb{P}(S_n \geq x) \leq e^{-n\Phi(x)},
$$

where $\Phi(x) = \sup(\beta x - \log \phi(\beta))$, and $\phi(\beta) = \int e^{\beta x} dP$. β∈R

Theorem (F. Hiai, D. Petz)

Let $U_n \in \mathbb{U}(n)$ and $\mu_n := \frac{1}{n} \sum_{j=1}^n \delta_{e^{i\theta_j}}$, where $\{e^{i\theta_j}\}_{j=1}^n$ are the eigenvalues of *U_n*. Denote by P_n the law of μ_n . Then the sequence $\{P_n\}$ satisfies an LDP on *the space* P(S 1) *of probability measures on the unit circle equipped with the topology of weak convergence, with speed n*² *and strictly convex rate function*

$$
\mathcal{E}(\nu) = -\iint\limits_{\mathbb{S}^1\times\mathbb{S}^1} \log |z - w| d\nu(z) d\nu(w).
$$

October 11-13 2024 10/26

Connection to the constrained energy problem

From Hiai-Petz theorem it follows that the random variables $\mu_n(A_\theta) = \frac{N_\theta}{n}$ satisfies an *LDP* on [0, 1] with speed n^2 and rate function

$$
I(q) := \inf \{ \mathcal{E}(\nu) : \nu \in \mathcal{P}(\mathbb{S}^1), \nu(A_\theta) = q \},\
$$

where A_{θ} is an arc from $e^{-i\theta/2}$ to $e^{i\theta/2}$.

Connection to the constrained energy problem

From Hiai-Petz theorem it follows that the random variables $\mu_n(A_\theta) = \frac{N_\theta}{n}$ satisfies an *LDP* on [0, 1] with speed n^2 and rate function

$$
I(q) := \inf \{ \mathcal{E}(\nu) : \nu \in \mathcal{P}(\mathbb{S}^1), \nu(A_\theta) = q \},\
$$

where A_{θ} is an arc from $e^{-i\theta/2}$ to $e^{i\theta/2}$.

On the other hand, we have

$$
\lim_{n\to\infty}\frac{1}{n^2}\log\mathbb{E}[e^{\lambda nN_\theta}]=\lim_{n\to\infty}\int_0^\lambda\frac{G(x,n)}{n}dx=\sup_{q\in[0,1]}(q\lambda-I(q)),
$$

where

$$
G(\lambda,n):=\#\{j:p_j>Ke^{-\lambda n}\}.
$$

Problem I

Given *q* and θ , with $0 < q < 1$, $0 < \theta < 2\pi$, determine a measure $\nu \in \mathcal{P}(\mathbb{S}^1)$ that minimizes the energy $\mathcal{E}(\nu)$, subject to constraint $\nu(A_\theta) = q$.

Problem I

Given *q* and θ , with $0 < q < 1$, $0 < \theta < 2\pi$, determine a measure $\nu \in \mathcal{P}(\mathbb{S}^1)$ that minimizes the energy $\mathcal{E}(\nu)$, subject to constraint $\nu(A_\theta) = q$.

$\nu(A_{\theta})=q$

Problem II

Given *q* and β , with $0 < q < 1$, $-1 < \beta < 1$, determine a measure $\mu \in \mathcal{P}([-1,1])$ that minimizes the energy $\mathcal{E}(\mu)$, subject to constraint $\mu([\beta, 1]) = q.$

The limiting cases

- \triangleright When $\theta \to 0$, the Problem I becomes the weighted energy problem on the unit circle with an external field $Q(z) = \frac{q}{1-q} \log \frac{1}{|z-1|}$. (Lachance, Saff, Varga, '79)
- \triangleright When $\beta \to 1$, the Problem II becomes the weighted energy problem on [−1, 1] with an external field $Q(z) = \frac{q}{1-q} \log \frac{1}{|z-1|}$. (Saff, Ullman, Varga, '80)

The limiting cases

- \triangleright When $\theta \to 0$, the Problem I becomes the weighted energy problem on the unit circle with an external field $Q(z) = \frac{q}{1-q} \log \frac{1}{|z-1|}$. (Lachance, Saff, Varga, '79)
- \triangleright When $\beta \to 1$, the Problem II becomes the weighted energy problem on [−1, 1] with an external field $Q(z) = \frac{q}{1-q} \log \frac{1}{|z-1|}$. (Saff, Ullman, Varga, '80)

In particular, when a charge amount $q > 0$ is placed at $t = 1$, the equilibrium charge distribution of amount $1 - q$ on [−1, 1] is given by

$$
d\mu^*(x) = \frac{\sqrt{|x - \alpha|}}{\pi \sqrt{(x + 1)(1 - x)}} dx, \quad x \in [-1, \alpha],
$$

where $\alpha = 1 - 2q^2$.

 Ω

イロト イ押 トイヨ トイヨ トーヨ

Theorem 1. (K.-Saff, 2023) The measure $\nu^* \in \mathcal{P}(\mathbb{S}^1)$ such that $\mathcal{E}(\nu^*) = \inf \{ \mathcal{E}(\nu) : \nu \in \mathcal{P}(\mathbb{S}^1), \nu(A_\theta) = q \}$, is unique and i) if $q \ge \frac{\theta}{2q}$ $\frac{\theta}{2\pi}$, is given by

$$
d\nu^*(e^{i\psi}) = \frac{\sqrt{|\cos(\psi) - \alpha|}}{2\pi\sqrt{|\cos(\psi) - \cos(\frac{\theta}{2})|}} d\psi,
$$
\n(3)

where $e^{i\psi} \in A_\theta \cup \{z \in \mathbb{S}^1 : \arccos(\alpha) \le \arg z \le 2\pi - \arccos(\alpha)\}\$ and with α determined from the equation

$$
\int_{-1}^{\alpha} \frac{\sqrt{|x-\alpha|}}{\pi \sqrt{|(x+1)(x-\cos(\frac{\theta}{2}))(x-1)|}} dx = 1 - q;
$$

ii) if $q \leq \frac{\theta}{2n}$ $\frac{\theta}{2\pi}$, is given by (2), where $e^{i\psi} \in A_\theta^c \cup \{z \in \mathbb{S}^1 : -\arccos(\alpha) \le \arg z \le \arccos(\alpha)\}\$ and α is a solution to the equation

$$
\int_{-1}^{\beta} \frac{\sqrt{|x-\alpha|}}{\pi \sqrt{|(x+1)(x-\cos(\frac{\theta}{2}))(x-1)|}} dx = 1-q.
$$

Theorem 2. (K.-E.B.Saff, 2023), (A. Martínez-Finkelshtein, E.B.Saff, 2002) The measure $\mu^* \in \mathcal{P}([-1,1])$ such that $\mathcal{E}(\mu^*) = \inf \{ \mathcal{E}(\mu) : \mu \in \mathcal{P}([-1, 1]), \mu([\beta, 1]) = q \}$, is unique and **i**) if $q \ge \frac{1}{\pi} \int_{\beta}^{1} \frac{1}{\sqrt{1-\alpha}}$ $\frac{1}{1-x^2}dx$, is given by

$$
d\mu^*(x) = \frac{\sqrt{|x - \alpha|}}{\pi \sqrt{|(x + 1)(x - \beta)(x - 1)|}} dx,
$$
 (2)

where $x \in [-1, \alpha] \cup [\beta, 1]$ and α is determined from the equation

$$
\int_{-1}^{\alpha} \frac{\sqrt{|x-\alpha|}}{\pi \sqrt{|(x+1)(x-\beta)(x-1)|}} dx = 1 - q;
$$

ii) if $q \leq \frac{1}{\pi} \int_{\beta}^{1} \frac{1}{\sqrt{1-\alpha}}$ $\frac{1}{1-x^2}$ *dx*, is given by (3) for *x* ∈ [−1, β] ∪ [α, 1], where α is the solution to the equation

$$
\int_{-1}^{\beta} \frac{\sqrt{|x-\alpha|}}{\pi \sqrt{|(x+1)(x-\beta)(x-1)|}} dx = 1 - q.
$$

October 11-13 2024 15/26

Energy problem with prescribed masses

Suppose Σ_1 , Σ_2 are closed disjoint sets on $\mathbb C$ of **positive distance** from one another. We want to minimize the energy

$$
\iint \log \frac{1}{|z-\zeta|} d\sigma(z) d\sigma(\zeta) \tag{4}
$$

for all measures σ of the from $\sigma = \sigma_1 + \sigma_2$, where σ_j is a compactly supported measure of total mass m_j on Σ_j .

Energy problem with prescribed masses

Suppose Σ_1 , Σ_2 are closed disjoint sets on $\mathbb C$ of **positive distance** from one another. We want to minimize the energy

$$
\iint \log \frac{1}{|z-\zeta|} d\sigma(z) d\sigma(\zeta) \tag{4}
$$

for all measures σ of the from $\sigma = \sigma_1 + \sigma_2$, where σ_j is a compactly supported measure of total mass m_j on Σ_j . For $z \in \Sigma_j$, set

$$
w_j^{\sigma}(z) := \exp(-U^{\overline{\sigma}_j}(z)/m_j), \quad j = \overline{1,2}
$$

where

$$
U^{\overline{\sigma}_j}(z) := \int \log \frac{1}{|z-\zeta|} d\overline{\sigma}_j(\zeta), \quad \overline{\sigma}_1 := \sigma_2, \quad \overline{\sigma}_2 := \sigma_1.
$$

Energy problem with prescribed masses

Suppose Σ_1 , Σ_2 are closed disjoint sets on $\mathbb C$ of **positive distance** from one another. We want to minimize the energy

$$
\iint \log \frac{1}{|z-\zeta|} d\sigma(z) d\sigma(\zeta) \tag{4}
$$

for all measures σ of the from $\sigma = \sigma_1 + \sigma_2$, where σ_j is a compactly supported measure of total mass m_j on Σ_j . For $z \in \Sigma_j$, set

$$
w_j^{\sigma}(z) := \exp(-U^{\overline{\sigma}_j}(z)/m_j), \quad j = \overline{1,2}
$$

where

$$
U^{\overline{\sigma}_j}(z) := \int \log \frac{1}{|z-\zeta|} d\overline{\sigma}_j(\zeta), \quad \overline{\sigma}_1 := \sigma_2, \quad \overline{\sigma}_2 := \sigma_1.
$$

We call by $\mu^* = \mu_1^* + \mu_2^*$ the measure minimizing [\(4\)](#page-25-0)[.](#page-27-0)

Theorem (Characterization of the optimal measure on $\Sigma_1 \cup \Sigma_2^*$) *For* $i = 1, 2$ *we have*

$$
\mu_j^* = m_j \mu_{w_j^{(\mu^*)}},
$$

where $\mu_{w_j^{(\mu^*)}}$ is the unit measure that is optimal for the weighted energy *problem on* Σ_j *corresponding to* $w_j^{(\mu^*)}$ *j .*

Conversely, if for some σ *supported on* $\Sigma_1 \cup \Sigma_2$ *with* $\|\sigma\|_{\Sigma_1} = m_1$ *,* $\|\sigma\|_{\Sigma_2} = m_2$ *we have*

$$
\sigma_j = m_j \mu_{w_j^{(\sigma)}}, \quad j = 1, 2,
$$

October 11-13 2024 17/26

 Ω

 $A \cap B \rightarrow A \cap B$

then $\sigma = \mu^*$.

[∗]Special case of Theorem VIII.2.1 from the book by Saff-Totik.

Frostman inequalities

Thus, if μ^* is an optimal measure, there exist constants F_1, F_2 such that $U^{\mu^*}(z) \ge F_1$, q.e. on Σ_1 , $U^{\mu^*}(z) = F_1$, q.e. on supp μ_1^* , $U^{\mu^*}(z) \ge F_2$, q.e. on Σ_2 , $U^{\mu^*}(z) = F_2$, q.e. on supp μ_2^* .

KO KARA KE KA EKARA E YA GA

Constrained problem on an interval. Determining the support of μ^*

We consider probability measures μ on [−1, 1] with $\mu([\beta, 1]) = q$. How does the support of the optimal measure μ^* look like?

 209

イロト イ何 トイヨ トイヨ トーヨ

Constrained problem on an interval. Determining the support of μ^*

We consider probability measures μ on [-1, 1] with $\mu([\beta, 1]) = q$. How does the support of the optimal measure μ^* look like?

Notice that if $q = \frac{1}{\pi} \int_{\beta}^{1} \frac{1}{\sqrt{1-\beta}}$ $\frac{1}{1-x^2}dx$, then

$$
d\mu(x) = \frac{1}{\pi} \frac{dx}{\sqrt{1 - x^2}}, \quad x \in [-1, 1].
$$

Constrained problem on an interval. Determining the support of μ^*

We consider probability measures μ on [-1, 1] with $\mu([\beta, 1]) = q$. How does the support of the optimal measure μ^* look like?

Notice that if $q = \frac{1}{\pi} \int_{\beta}^{1} \frac{1}{\sqrt{1-\beta}}$ $\frac{1}{1-x^2}dx$, then $d\mu(x) = \frac{1}{\pi}$ *dx* √ $\frac{ax}{1-x^2}$, $x \in [-1,1].$

In the case $q \neq \frac{1}{\pi} \int_{\beta}^{1} \frac{1}{\sqrt{1-\frac{1}{n}}}$ $\frac{1}{1-x^2}$ *dx* the support of μ^* is $[-1, \alpha_0] \cup [\beta_0, 1]$, $\alpha_0 < \beta_0$. Indeed, supp $\mu_1^* \cap (-1, \beta)$ is an interval due to the fact that μ_1^* is the solution to the equilibrium problem on $[-1, \beta]$ with the convex external field $U^{\mu_2^*}(z)$. Similarly, supp $\mu_2^* \cap (\beta, 1)$ is an interval.

> (ロ) (@) (글) (글) (글) 200 October 11-13 2024 19/26

Consider

$$
H(z) = \int \frac{d\mu^*(\zeta)}{z - \zeta}.
$$

on the Riemann sphere $\overline{\mathbb{C}}$ cut along the support of μ^* , $[-1, \alpha_0] \cup [\beta_0, 1]$.

Consider

$$
H(z) = \int \frac{d\mu^*(\zeta)}{z - \zeta}.
$$

on the Riemann sphere $\overline{\mathbb{C}}$ cut along the support of μ^* , $[-1, \alpha_0] \cup [\beta_0, 1]$.

 $H^2(z)$ is a rational function on $\overline{\mathbb{C}}$ with at most simple poles at the points $\{-1, \alpha_0, \beta_0, 1\}$ and $H^2(z) \sim \frac{1}{z^2}$ $\frac{1}{z^2}$ when $z \to \infty$. Thus,

$$
H^{2}(z) = \frac{(z-A)(z-B)}{(z+1)(z-\alpha_{0})(z-\beta_{0})(z-1)}, \quad A, B \in \mathbb{R},
$$

$$
H(z) = \frac{i|z-A||z-B|}{\sqrt{(z-\alpha)(z-\alpha_{0})(z-\alpha)(z-1)}}, \quad z \in \text{supp }\mu^{*}
$$

$$
H(z) = \frac{P(z - 1)|z - 2|}{\sqrt{(z+1)(z-\alpha_0)(z-\beta_0)(z-1)}}, \quad z \in \text{supp }\mu^*.
$$

Cauchy's formula gives

$$
H(z) = \frac{1}{2\pi i} \oint_{\text{supp }\mu^*} \frac{H(\zeta)}{\zeta - z} d\zeta = \frac{1}{\pi i} \int_{\text{supp }\mu^*} \frac{H(y)}{y - z} dy,
$$

and since $H(z) = \int \frac{d\mu^*(\zeta)}{z-\zeta}$ $\frac{\mu(x)}{z-\zeta}$, we have

$$
d\mu^*(y) = \frac{|y - A||y - B|}{\pi \sqrt{(y+1)(y-\alpha_0)(y-\beta_0)(y-1)}} dy, \quad A, B \in \mathbb{R}
$$

Next, we show that $A = \alpha_0$, $\beta_0 = \beta$ if $q > \frac{1}{\pi} \int_{\beta}^{1} \frac{1}{\sqrt{1-\beta_0}}$ $rac{1}{1-x^2}dx$.

For $x \in (\alpha_0, \beta_0)$ consider

$$
\frac{dU^{\mu^*}(x)}{dx} = -\frac{1}{\pi} \int_{[-1,\alpha_0] \cup [\beta_0,1]} \frac{1}{x-y} \frac{|y-A||y-B|}{\sqrt{(y+1)(y-\alpha_0)(y-\beta_0)(y-1)}} dy,
$$

4 0 F -∢ ∱⊽

For $x \in (\alpha_0, \beta_0)$ consider

$$
\frac{dU^{\mu^*}(x)}{dx} = -\frac{1}{\pi} \int_{[-1,\alpha_0] \cup [\beta_0,1]} \frac{1}{x-y} \frac{|y-A||y-B|}{\sqrt{(y+1)(y-\alpha_0)(y-\beta_0)(y-1)}} dy,
$$

►
$$
\alpha_0 = \beta
$$
 - impossible
\n► $\alpha_0 < \beta \implies \alpha_0 = A = B$.

4 0 F -∢ ∱⊽

For $x \in (\alpha_0, \beta_0)$ consider

$$
\frac{dU^{\mu^*}(x)}{dx} = -\frac{1}{\pi} \int_{[-1,\alpha_0] \cup [\beta_0,1]} \frac{1}{x-y} \frac{|y-A||y-B|}{\sqrt{(y+1)(y-\alpha_0)(y-\beta_0)(y-1)}} dy,
$$

$$
\bullet \ \alpha_0 = \beta \cdot \text{impossible}
$$

$$
\blacktriangleright \alpha_0 < \beta \Longrightarrow \alpha_0 = A = B.
$$

To prove the above claims, recall that we have

$$
U^{\mu^*}(z) \ge F_1
$$
, q.e. on Σ_1 , $U^{\mu^*}(z) = F_1$, q.e. on supp μ_1^* ,
\n $U^{\mu^*}(z) \ge F_2$, q.e. on Σ_2 , $U^{\mu^*}(z) = F_2$, q.e. on supp μ_2^* .

Figure: Graph showing the relationship between the parameters α , β and q .

 \Rightarrow

 299

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \equiv \mathbf{A} + \mathbf{A} \equiv \mathbf{A}$

Constrained problem on the circle

Consider the Joukowski map $z = \Psi(\zeta) := \frac{1}{2}(\zeta + \zeta^{-1})$ that maps the exterior of the unit circle, conformally to $\mathbb{C} \setminus [-1, 1]$.

Constrained problem on the circle

.

Consider the Joukowski map $z = \Psi(\zeta) := \frac{1}{2}(\zeta + \zeta^{-1})$ that maps the exterior of the unit circle, conformally to $\mathbb{C} \setminus [-1, 1]$. Define ν^* by

$$
d\nu^*(e^{i\psi}) = \frac{1}{2\pi} \frac{\sqrt{|\cos(\psi) - \alpha|}}{\sqrt{|\cos(\psi) - \cos(\frac{\theta}{2})|}} d\psi
$$

October 11-13 2024 24/26

Constrained problem on the circle

Consider the Joukowski map $z = \Psi(\zeta) := \frac{1}{2}(\zeta + \zeta^{-1})$ that maps the exterior of the unit circle, conformally to $\mathbb{C} \setminus [-1, 1]$. Define ν^* by

$$
d\nu^*(e^{i\psi}) = \frac{1}{2\pi} \frac{\sqrt{|\cos(\psi) - \alpha|}}{\sqrt{|\cos(\psi) - \cos(\frac{\theta}{2})|}} d\psi
$$

We show that

.

$$
U^{\mu^*}(\Psi(e^{i\varphi}))=2U^{\nu^*}(e^{i\varphi})+\log 2,
$$

October 11-13 2024 24/26

 Ω

where μ^* is the solution to the Problem II with $\beta = \cos(\frac{\theta}{2})$, and conclude from here that ν^* is optimal.

Thank you!

 \mathcal{A}

 \leftarrow \Box \rightarrow \leftarrow \Box

E

- J. B. Hough, M. Krishnapur, Y. Peres, and B. Virág, *Determinantal processes and independence*, Probab. Surv. 3 (2006), 206–229. MR-2216966.
- 歸 M. Lachance, E. B. Saff, R.S. Varga, *Inequalities for polynomials with a prescribed zero*, Mathematische Zeitschrift, Vol. 168 (1979), pp. 105-116.
- T. Liu, E. Meckes, *Asymptotics for the eigenvalues of the kernel of the unitary eigenvalue process restricted to an arc*, (personal communication).
- E. Meckes, *The Random Matrix Theory of the Classical Compact Groups (Cambridge Tracts in Mathematics)*. Cambridge: Cambridge University Press, 2019. doi:10.1017/9781108303453
- E. B. Saff, V. Totik, *Logarithmic Potentials with External Fields*, Berlin: Springer-Verlag, 1997.
- E. E. B. Saff, J.L. Ullman, R.S. Varga, *Incomplete Polynomials: An Electrostatics approach*, Approximation Theory III, (E.W. Cheney, ed.) Academic Press, New York, (1980), pp. 769-7[82](#page-42-0). Ω