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Unitary eigenvalue process

Recall that n × n matrix U over C is unitary if

UU∗ = U∗U = In

Consider a Haar-distributed random unitary matrix Un, n ∈ N, and denote its
eigenvalues by {eiθ1 , eiθ2 , ...., eiθn}.

Fix θ ∈ (0, 2π), and let

Nθ := #{j : 0 < θj < θ}.
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Unitary eigenvalue process

The set of eigenvalues is a determinantal point process, meaning that there
exists a kernel Kn : [0, 2π]× [0, 2π] → [0, 1] such that, for pairwise disjoint
subsets A1, ...,Ak ⊂ [0, 2π],

E
[ k∏

j=1

NAi

]
=

∫
A1

...

∫
Ak

det[Kn(xi, xj)]
k
i,j=1dµ(x1)...dµ(xk),

where the kernel Kn is given by

Kn(x, y) :=

{
sin(n(x−y)

2 )/ sin( (x−y)
2 ), if x − y ̸= 0,

n, if x − y = 0.
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Theorem (J. B. Hough, M. Krishnapur, Y. Peres, and B. Virág, [1])

Let X be a DPP on a compact metric measure space (Λ, µ) with kernel
K : Λ× Λ → C. Suppose that

K(f )(x) =
∫

K(x, y)f (y)dµ(y), f ∈ L2(µ)

is self-adjoint, nonnegative, and locally trace-class with eigenvalues in [0,1].

Let KD(x, y) = ID(x)K(x, y)ID(y) be the restriction of K to D ⊂ Λ.
Denote by {pj}j∈A the eigenvalues of KD(x, y) and by ND the number of
particles of the DPP which lie in D.
Then

ND
d
=

∑
j∈A

ξj,

where ξj are independent Bernoulli random variables with P[ξj = 1] = pj and
P[ξj = 0] = 1 − pj.
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Motivation: Meckes’ problem

By the theorem above,

Nθ
d
=

n∑
j=1

ξj,

where P[ξj = 1] = pj and P[ξj = 0] = 1 − pj.

Question (E. Meckes)
What are the asymptotics for pj near zero?
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Lemma (D. Slepian, 1978)

i) for any fixed ρ ∈ (0, 1), there exist constants c0 = c0(ρ), n0 = n0(ρ) such
that

pj(n) ≥ 1 − e−c0n for all j ≤ nθ
2π

(1 − ρ) and all n ≥ n0;

ii) for any fixed ρ ∈ (0, 2π/θ − 1) there exist constants c1 = c1(ρ),
n1 = n1(ρ) such that

pj(n) ≤ e−c1n for all j ≥ nθ
2π

(1 + ρ) and all n ≥ n1.

For K large and fixed, and λ ∈ R, consider

G(λ, n) := #{j : pj > Ke−λn}.

Our goal is to understand G(λ, n) as a function of λ and n.
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Theorem (K.-Saff, 2023)

For any fixed ε > 0,

1
2ε

∫ λ+ε

λ−ε
|G(x, n)|dx =

n
2ε

(Λ(λ+ ε)− Λ(λ− ε))− o(n),

where the function Λ(λ) = sup
q∈[0,1]

{qλ− I(q)} is given by the

Fenchel-Legendre transform of the function I.
In particular, if λ ≥ C, where C is explicitly known constant, then

1
2ε

∫ λ+ε

λ−ε
|G(x, n)|dx = n − o(n).
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Large deviation principle
Definition
A sequence of Borel measures {Pn} on a topological space X satisfies a large
deviation principle (LDP) with rate function I and speed sn if for all Borel sets
B ⊆ X,

− inf
x∈B0

I(x) ≤ lim inf
n→∞

1
sn

log(Pn(B)) ≤ lim sup
n→∞

1
sn

log(Pn(B)) ≤ −inf
x∈B

I(x)

Example. Let X1,X2, ... be a sequence of i.i.d. with law P and mean m.
Then, by the law of large numbers,

Sn :=
X1 + X2 + ...+ Xn

n
−→
n→∞

m.

For x ≥ m we get
P(Sn ≥ x) ≤ e−nΦ(x),

where Φ(x) = sup
β∈R

(βx − log ϕ(β)), and ϕ(β) =
∫

eβxdP.
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Theorem (F. Hiai, D. Petz)

Let Un ∈ U(n) and µn := 1
n

∑n
j=1 δeiθj , where {eiθj}n

j=1 are the eigenvalues of
Un. Denote by Pn the law of µn. Then the sequence {Pn} satisfies an LDP on
the space P(S1) of probability measures on the unit circle equipped with the
topology of weak convergence, with speed n2 and strictly convex rate function

E(ν) = −
∫∫

S1×S1

log |z − w|dν(z)dν(w).
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Connection to the constrained energy problem

From Hiai-Petz theorem it follows that the random variables µn(Aθ) =
Nθ
n

satisfies an LDP on [0, 1] with speed n2 and rate function

I(q) := inf{E(ν) : ν ∈ P(S1), ν(Aθ) = q},

where Aθ is an arc from e−iθ/2 to eiθ/2.

On the other hand, we have

lim
n→∞

1
n2 logE[eλnNθ ] = lim

n→∞

∫ λ

0

G(x, n)
n

dx = sup
q∈[0,1]

(qλ− I(q)),

where
G(λ, n) := #{j : pj > Ke−λn}.
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Problem I
Given q and θ, with 0 < q < 1,
0 < θ < 2π, determine a measure
ν ∈ P(S1) that minimizes the energy
E(ν), subject to constraint ν(Aθ) = q.

Problem II
Given q and β, with 0 < q < 1,
−1 < β < 1, determine a measure
µ ∈ P([−1, 1]) that minimizes the
energy E(µ), subject to constraint
µ([β, 1]) = q.
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The limiting cases

▶ When θ → 0, the Problem I becomes the weighted energy problem on
the unit circle with an external field Q(z) = q

1−q log
1

|z−1| . (Lachance,
Saff, Varga, ’79)

▶ When β → 1, the Problem II becomes the weighted energy problem on
[−1, 1] with an external field Q(z) = q

1−q log
1

|z−1| . (Saff, Ullman, Varga,
’80)

In particular, when a charge amount q > 0 is placed at t = 1, the equilibrium
charge distribution of amount 1 − q on [−1, 1] is given by

dµ∗(x) =

√
|x − α|

π
√

(x + 1)(1 − x)
dx, x ∈ [−1, α],

where α = 1 − 2q2.
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Theorem 1. (K.-Saff, 2023)
The measure ν∗ ∈ P(S1) such that
E(ν∗) = inf{E(ν) : ν ∈ P(S1), ν(Aθ) = q}, is unique and
i) if q ≥ θ

2π , is given by

dν∗(eiψ) =

√
| cos(ψ)− α|

2π
√

| cos(ψ)− cos( θ2 )|
dψ, (3)

where eiψ ∈ Aθ ∪ {z ∈ S1 : arccos(α) ≤ arg z ≤ 2π − arccos(α)} and with
α determined from the equation∫ α

−1

√
|x − α|

π
√

|(x + 1)(x − cos( θ2 ))(x − 1)|
dx = 1 − q;

ii) if q ≤ θ
2π , is given by (2), where

eiψ ∈ Ac
θ ∪ {z ∈ S1 : − arccos(α) ≤ arg z ≤ arccos(α)} and α is a solution

to the equation∫ β

−1

√
|x − α|

π
√

|(x + 1)(x − cos( θ2 ))(x − 1)|
dx = 1 − q.
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Theorem 2. (K.-E.B.Saff, 2023), (A. Martínez-Finkelshtein, E.B.Saff, 2002)
The measure µ∗ ∈ P([−1, 1]) such that
E(µ∗) = inf{E(µ) : µ ∈ P([−1, 1]), µ([β, 1]) = q}, is unique and
i) if q ≥ 1

π

∫ 1
β

1√
1−x2 dx, is given by

dµ∗(x) =

√
|x − α|

π
√
|(x + 1)(x − β)(x − 1)|

dx, (2)

where x ∈ [−1, α] ∪ [β, 1] and α is determined from the equation∫ α

−1

√
|x − α|

π
√

|(x + 1)(x − β)(x − 1)|
dx = 1 − q;

ii) if q ≤ 1
π

∫ 1
β

1√
1−x2 dx, is given by (3) for x ∈ [−1, β] ∪ [α, 1], where α is the

solution to the equation∫ β

−1

√
|x − α|

π
√

|(x + 1)(x − β)(x − 1)|
dx = 1 − q.
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Energy problem with prescribed masses
Suppose Σ1, Σ2 are closed disjoint sets on C of positive distance from one
another. We want to minimize the energy∫∫

log
1

|z − ζ|
dσ(z)dσ(ζ) (4)

for all measures σ of the from σ = σ1 + σ2, where σj is a compactly
supported measure of total mass mj on Σj.

For z ∈ Σj, set

wσj (z) := exp(−Uσj(z)/mj), j = 1, 2

where

Uσj(z) :=
∫

log
1

|z − ζ|
dσj(ζ), σ1 := σ2, σ2 := σ1.

We call by µ∗ = µ∗1 + µ∗2 the measure minimizing (4).
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Theorem (Characterization of the optimal measure on Σ1 ∪ Σ2
∗)

For j = 1, 2 we have
µ∗j = mjµw(µ∗)

j
,

where µ
w(µ∗)

j
is the unit measure that is optimal for the weighted energy

problem on Σj corresponding to w(µ∗)
j .

Conversely, if for some σ supported on Σ1 ∪ Σ2 with ∥σ∥Σ1 = m1,
∥σ∥Σ2 = m2 we have

σj = mjµw(σ)
j
, j = 1, 2,

then σ = µ∗.

∗Special case of Theorem VIII.2.1 from the book by Saff-Totik.
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Frostman inequalities

Thus, if µ∗ is an optimal measure, there exist constants F1,F2 such that

Uµ∗(z) ≥ F1, q.e. on Σ1, Uµ∗(z) = F1, q.e. on supp µ∗1,

Uµ∗(z) ≥ F2, q.e. on Σ2, Uµ∗(z) = F2, q.e. on supp µ∗2.
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Constrained problem on an interval. Determining the
support of µ∗

We consider probability measures µ on [−1, 1] with µ([β, 1]) = q. How does
the support of the optimal measure µ∗ look like?

Notice that if q = 1
π

∫ 1
β

1√
1−x2 dx, then

dµ(x) =
1
π

dx√
1 − x2

, x ∈ [−1, 1].

In the case q ̸= 1
π

∫ 1
β

1√
1−x2 dx the support of µ∗ is [−1, α0] ∪ [β0, 1], α0 < β0.

Indeed, supp µ∗1 ∩ (−1, β) is an interval due to the fact that µ∗1 is the solution
to the equilibrium problem on [−1, β] with the convex external field Uµ∗2 (z).
Similarly, supp µ∗2 ∩ (β, 1) is an interval.
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Constrained problem on an interval. Finding the density
function of µ∗.

Consider

H(z) =
∫

dµ∗(ζ)
z − ζ

.

on the Riemann sphere C cut along the support of µ∗, [−1, α0] ∪ [β0, 1].

H2(z) is a rational function on C with at most simple poles at the points
{−1, α0, β0, 1} and H2(z) ∼ 1

z2 when z → ∞. Thus,

H2(z) =
(z − A)(z − B)

(z + 1)(z − α0)(z − β0)(z − 1)
, A,B ∈ R,

H(z) =
i|z − A||z − B|√

(z + 1)(z − α0)(z − β0)(z − 1)
, z ∈ supp µ∗.
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Constrained problem on an interval. Finding the density
function of µ∗.

Cauchy’s formula gives

H(z) =
1

2πi

∮
supp µ∗

H(ζ)

ζ − z
dζ =

1
πi

∫
supp µ∗

H(y)
y − z

dy,

and since H(z) =
∫ dµ∗(ζ)

z−ζ , we have

dµ∗(y) =
|y − A||y − B|

π
√
(y + 1)(y − α0)(y − β0)(y − 1)

dy, A,B ∈ R

Next, we show that A = α0, β0 = β if q > 1
π

∫ 1
β

1√
1−x2 dx.
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Constrained problem on an interval. Finding the density
function of µ∗.

For x ∈ (α0, β0) consider

dUµ∗(x)
dx

= − 1
π

∫
[−1,α0]∪[β0,1]

1
x − y

|y − A||y − B|√
(y + 1)(y − α0)(y − β0)(y − 1)

dy,

▶ α0 = β - impossible
▶ α0 < β =⇒ α0 = A = B.

To prove the above claims, recall that we have

Uµ∗(z) ≥ F1, q.e. on Σ1, Uµ∗(z) = F1, q.e. on supp µ∗1,

Uµ∗(z) ≥ F2, q.e. on Σ2, Uµ∗(z) = F2, q.e. on supp µ∗2.
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Figure: Graph showing the relationship between the parameters α, β and q.
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Constrained problem on the circle

Consider the Joukowski map z = Ψ(ζ) := 1
2(ζ + ζ−1) that maps the exterior

of the unit circle, conformally to C \ [−1, 1].

Define ν∗ by

dν∗(eiψ) =
1

2π

√
| cos(ψ)− α|√

| cos(ψ)− cos( θ2 )|
dψ

.
We show that

Uµ∗(Ψ(eiφ)) = 2Uν∗(eiφ) + log 2,

where µ∗ is the solution to the Problem II with β = cos( θ2 ), and conclude
from here that ν∗ is optimal.
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Define ν∗ by

dν∗(eiψ) =
1

2π

√
| cos(ψ)− α|√

| cos(ψ)− cos( θ2 )|
dψ

.

We show that
Uµ∗(Ψ(eiφ)) = 2Uν∗(eiφ) + log 2,

where µ∗ is the solution to the Problem II with β = cos( θ2 ), and conclude
from here that ν∗ is optimal.
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