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Unitary eigenvalue process

Recall that n x n matrix U over C is unitary if
uuvr=U"U =1,

Consider a Haar-distributed random unitary matrix U,, n € N, and denote its
eigenvalues by {e e ..., e},

Fix 6 € (0,27), and let

No:=#{j:0<6; <0}



Unitary eigenvalue process

The set of eigenvalues is a determinantal point process, meaning that there
exists a kernel K, : [0,27] x [0,27] — [0, 1] such that, for pairwise disjoint
subsets A1, ..., Ax C [0, 27],

k
E[ENAi] - //41 oo | det[K(xi )l dpn(x) . dp(x),
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Unitary eigenvalue process

The set of eigenvalues is a determinantal point process, meaning that there
exists a kernel K, : [0,27] x [0,27] — [0, 1] such that, for pairwise disjoint
subsets A1, ..., Ax C [0, 27],

k
E[ENAi] - //41 oo | det[K(xi )l dpn(x) . dp(x),

A

where the kernel K, is given by

sin("(x;y))/sin((xgy)), if x—y#0,
n, if x—y=0.

Ky(x,y) := {
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Figure 3.1 On the left are the eigenvalues of an 80 x 80 random unitary matrix;

on the right are 80 1.1.d. uniform random points.



Theorem (J. B. Hough, M. Krishnapur, Y. Peres, and B. Virdg, [1])

Let X be a DPP on a compact metric measure space (A, p) with kernel
K : A x A — C. Suppose that

K(F)(x) = / K(x,)f0)Au(y), f e ()

is self-adjoint, nonnegative, and locally trace-class with eigenvalues in [0,1].

Let Kp(x,y) = Ip(x)K(x,y)Ip(y) be the restriction of K to D C A.
Denote by {p;}jc 4 the eigenvalues of Kp(x,y) and by Np the number of
particles of the DPP which lie in D.

Then .,
ND = Z 5]7
JEA

where & are independent Bernoulli random variables with P[§; = 1] = p; and
Pl = 0] = 1 —p;.

v




Motivation: Meckes’ problem

By the theorem above,

N0 i Zgja
j=1
where P[§; = 1] = pjand P[§; = 0] = 1 — p;.
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Motivation: Meckes’ problem

By the theorem above,
n
d
N 6 — Z §j )
j=1

where P[¢; = 1] = pjand P[§; = 0] = 1 — p;.

Question (E. Meckes)
What are the asymptotics for p; near zero?
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Lemma (D. Slepian, 1978)

i) for any fixed p € (0, 1), there exist constants co = co(p), no = no(p) such
that 0
pj(n) >1—e " forall j < Z—(l —p) and all n > ny;
T

i) for any fixed p € (0,27/6 — 1) there exist constants ¢ = c1(p),
ny = ny(p) such that

0
pj(n) < e 1" forall j> Z—(l +p) andall n > ny.
T




Lemma (D. Slepian, 1978)

i) for any fixed p € (0, 1), there exist constants co = co(p), no = no(p) such
that

0
pj(n) >1—e " forall j < Z—(l —p) and all n > ny;
7

i) for any fixed p € (0,27/6 — 1) there exist constants ¢ = c1(p),
ny = ny(p) such that

0
pj(n) < e 1" forall j> Z—(l +p) andall n > ny.
T

For K large and fixed, and A € R, consider

G\, n) := #{j: p; > Ke™"}.

Our goal is to understand G(\, n) as a function of A and n.



Theorem (K.-Saff, 2023)

For any fixed € > 0,

1 Ate

= |G(x,n)|dx:Z%(A(A—ka)—A()\—s))—o(n),

where the function A(\) = sup {g\ — I(q)} is given by the
q€[0,1]

Fenchel-Legendre transform of the function I.

In particular, if A > C, where C is explicitly known constant, then

1 Ate
|G(x,n)|dx =n — o(n).

2e A—e




Large deviation principle

Definition

A sequence of Borel measures {P, } on a topological space X satisfies a large
deviation principle (LDP) with rate function / and speed s, if for all Borel sets
BCX,

—inf I(x) < lim infl log(P,(B)) < lim supl log(P,(B)) < —infl(x)

xeB° n—oo S, n—oo Sn x€B




Large deviation principle

Definition

A sequence of Borel measures {P, } on a topological space X satisfies a large
deviation principle (LDP) with rate function / and speed s, if for all Borel sets
BCX,

—inf I(x) < lim infl log(Pn(B)) < lim supl log(P,(B)) < —infl(x)

xeB° n—oo S, n—oo Sn x€B

Example. Let X, X>, ... be a sequence of i.i.d. with law P and mean m.
Then, by the law of large numbers,

Xi+Xo+...+X
e S B L R,

n n—o00

S, :

For x > m we get
P(S, > x) < e "W,

sup(Bx — log ¢(3)), and ¢(53) = [ e™dP.
BER

where ®(x) =



Theorem (F. Hiai, D. Petz)

Let U, € U(n) and p,, = % ;.':1 8 jo;, where {e i are the eigenvalues of
U,. Denote by P, the law of ,. Then the sequence {P,} satisfies an LDP on
the space P(S') of probability measures on the unit circle equipped with the

topology of weak convergence, with speed n> and strictly convex rate function

Elv)=— // log |z — wldv(z)dv(w).

St xS!




Connection to the constrained energy problem

From Hiai-Petz theorem it follows that the random variables 11, (Ag) = %
satisfies an LDP on [0, 1] with speed n? and rate function

I(q) :=inf{E(v) : v € P(SY), v(4g) = ¢},

where Ay is an arc from e~/ to ¢/2.
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Connection to the constrained energy problem

From Hiai-Petz theorem it follows that the random variables 11, (Ag) = o
satisfies an LDP on [0, 1] with speed n? and rate function

n

I(q) :=inf{E(v) : v € P(SY), v(4g) = ¢},

where Ay is an arc from e 10/2 o £10/2,

On the other hand, we have

A

. ANgT _ 1 Glx,n)
Jim 5 log Be™] = lim ; TdX—qi%a](qA—l(Q)),

where
G\, n) := #{j: p; > Ke ™"}.



Problem I

Given g and 0, with 0 < g < 1,

0 < 0 < 27, determine a measure

v € P(S') that minimizes the energy
E(v), subject to constraint v(Ag) = g.

D

v(Ag) = ¢
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Problem I Problem II

Given g and 6, with 0 < ¢ < 1, Given g and 3, with 0 < ¢ < 1,

0 < 6 < 27, determine a measure —1 < B < 1, determine a measure
v € P(S!) that minimizes the energy | # € P([—1,1]) that minimizes the
&£(v), subject to constraint v/(Ag) = g. | energy £(u), subject to constraint

w([B,1]) = q. )
9
2
w([8,1]) =g
v(Ap) =q -1 A L
6
2



The limiting cases

> When 6§ — 0, the Problem I becomes the weighted energy problem on
the unit circle with an external field Q(z) = qu log ﬁ (Lachance,
Saff, Varga, ’79)

> When 5 — 1, the Problem II becomes the weighted energy problem on
[—1, 1] with an external field O(z) = 1, log ﬁ (Saff, Ullman, Varga,
"80)



The limiting cases

> When 6§ — 0, the Problem I becomes the weighted energy problem on
the unit circle with an external field Q(z) = 7% log ﬁ (Lachance,
Saff, Varga, ’79)
> When 5 — 1, the Problem II becomes the weighted energy problem on
[—1, 1] with an external field O(z) = 1, log ﬁ (Saff, Ullman, Varga,
"80)
In particular, when a charge amount ¢ > 0 is placed at t = 1, the equilibrium
charge distribution of amount 1 — g on [—1, 1] is given by

* _ \/|x_a| -
du (x)_w\/m(l—x)dX7 x€[-1,q],

where o = 1 — 247,




Theorem 1. (K.-Saff, 2023)

The measure v* € P(S!) such that

E(v*) = inf{E(y) :v € P(SY),v(Ag) = ¢}, is unique and
i)ifg > is given by

271"

|COS(¢) al
27r\/| cos(1) — cos( g)|

where ¢’ € Ag U {z € S! : arccos(a) < arg z < 27 — arccos(c)} and with
a determined from the equation

/a . x—of dx =1
Uyl 1D - cos(§) (- 1)]
i) if g < ., is given by (2), where

eV € AU {z €S!: —arccos(a) < arg z < arccos(a)} and a is a solution
to the equation

dv* (e dy, (3)

-4

]x—a\ dx=1-—q.
/177\/’X+ X—COS(Q))(x_1)| '

2



Theorem 2. (K.-E.B.Saff, 2023), (A. Martinez-Finkelshtein, E.B.Saff, 2002)
The measure p* € P([—1, 1]) such that

E(p*) = inf{&(p) : p € P([=1,1]), u([B, 1]) = ¢}, is unique and
ifg>1[] i dx, is given by

\/ !x —af
dx, (2)
/[ + 1) - B)(x— 1)
where x € [—1,a] U [, 1] and « is determined from the equation

/a Vik—al
/[ D= B)(x— 1))

dp* (x) =

dx=1-—gq;

i) if g < 1 [} p—dx, is given by (3) for x € 1, 8] U [a, 1], where ais the
solution to the equation

/[ vhizo gy
/I D A 1)

_q.




Energy problem with prescribed masses

Suppose X1, 3, are closed disjoint sets on C of positive distance from one
another. We want to minimize the energy

1
// log mdd(z)da(g) (4)

for all measures o of the from o = o + 02, where o; is a compactly
supported measure of total mass m; on ;.



Energy problem with prescribed masses

Suppose X1, 3, are closed disjoint sets on C of positive distance from one
another. We want to minimize the energy

1
// log mdd(z)da(g) (4)

for all measures o of the from o = o + 02, where o; is a compactly
supported measure of total mass m; on ;.
For z € %, set

w (2) == exp(=U7(2)/my), j=1,2

where

& 1
UU/(Z) = /10g mdaj(g), 51 = 03, 52 = 0].



Energy problem with prescribed masses

Suppose X1, 3, are closed disjoint sets on C of positive distance from one
another. We want to minimize the energy

1
// log mdd(z)da(g) (4)

for all measures o of the from o = o + 02, where o; is a compactly
supported measure of total mass m; on ;.
For z € %, set

w (2) == exp(=U7(2)/my), j=1,2

where
= 1 _ B

We call by p* = pj + p5 the measure minimizing (4).
D 4 4 4 October 11-13 2024 16/26



Theorem (Characterization of the optimal measure on >; U >.,%)

Forj = 1,2 we have

*_

/J’] mj:uw'(#*) )
J

where ) is the unit measure that is optimal for the weighted energy
i

problem on Y; corresponding to w}“ ",

Conversely, if for some o supported on ¥\ U Xy with ||o||s, = m,
llo|ls, = ma we have
gj = mj:uw(f’% ]: 1727
J

*

then o = p*.

*Special case of Theorem VIII.2.1 from the book by Saff-Totik.



Frostman inequalities

Thus, if ¢* is an optimal measure, there exist constants F'|, F such that

UM (z) > F), qe.onX;, U" (z) =F), q.e.onsupp pl,

UM (z) > F,, qe.onY,, UM (z) =F,, qe.onsupp /.



Constrained problem on an interval. Determining the
support of i~

We consider probability measures p on [—1, 1] with u([8, 1]) = g. How does
the support of the optimal measure p* look like?
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Notice that if g = + f 5 ﬁdx then

1 dx
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Constrained problem on an interval. Determining the
support of p*

We consider probability measures 1 on [—1, 1] with u([3, 1]) = g. How does
the support of the optimal measure p* look like?

Notice that if g = 1 [ 5 ﬁdx then
1 dx
du(x)—; 3 xe[-1,1].

In the case g # % fﬁl \/11_7dx the support of p* is [—1, ap] U [Bo, 1], ap < Po-
Indeed, supp p7 N (—1, B) is an interval due to the fact that y] is the solution
to the equilibrium problem on [—1, 3] with the convex external field U2 (z).
Similarly, supp p N (5, 1) is an interval.



Constrained problem on an interval. Finding the density
function of u*.

Consider

[ dur(Q)
H(z)—/ )

on the Riemann sphere C cut along the support of u*, [~ 1, ] U [Bo, 1].



Constrained problem on an interval. Finding the density
function of u*.

Consider

[ dur(Q)
H(z)—/ )

on the Riemann sphere C cut along the support of u*, [~ 1, ] U [Bo, 1].

H?(z) is a rational function on C with at most simple poles at the points
{—1, a9, Bo, 1} and H?(z) ~ le when z — oo. Thus,

_ (z=A)(z=B)
H(z) = T D0 B) 1)’ A,BER,
H(z) = ilz— Al|z — B|

\/(Z-f- 1)(z—ao)(z— Bo)(z— 1)’ z € supp u*.



Constrained problem on an interval. Finding the density
function of u*.

Cauchy’s formula gives

Ho- b f MO L[onl,

270 Joupp p+ € — 2 T Jsupp p* ¥ — 2

and since H(z) = [ %(CO’ we have

ly —Ally — B
O+ D0 —a)y—Bo)y—1)

du*(y) = dy, A,BER

Next, we show that A = «ayg, Sy = S if ¢ > %fﬂl ﬁdx.



Constrained problem on an interval. Finding the density
function of u*.

For x € (ap, o) consider

dvr(x) _ 1 1 ly —Ally — B| J
dx ™ / =Y/ + D) —a)y—Fo)y—1) '

[7 1 7a0]U[5071]



Constrained problem on an interval. Finding the density
function of u*.
For x € (ap, o) consider

dU* (x)

_ 1 / 1 ly —Ally — B|
dx m X=y/(G+ 1D —a0)y— o)y —1)
[—1,20]U[Bo,1]

dy,

» oy = [ - impossible
> a0<5:a0:A:B.



Constrained problem on an interval. Finding the density
function of u*.

For x € (ap, o) consider

dvr(x) _ 1 1 v —Ally — 8] J
dx ™ / X=y/(r+ 1)y —a)y—Bo)y—1) '

[7 1 ,ao]U[Bo,l]

» oy = [ - impossible
> a0<5:a0:A:B.

To prove the above claims, recall that we have
UM (z) > F), qe.onX;, U" (z) =F), q.e.onsupp pl,

UM (z) > F, qe.onXy, UM (z) = Fa, q.e.onsupp i}






Constrained problem on the circle

Consider the Joukowski map z = ¥(¢) := 4(¢ + ¢!) that maps the exterior
of the unit circle, conformally to C \ [—1, 1].



Constrained problem on the circle

Consider the Joukowski map z = ¥(¢) := 4(¢ + ¢!) that maps the exterior
of the unit circle, conformally to C \ [—1, 1].
Define v* by

1 Vo) o]

dV*(ei¢) =
2™\ Jl cos() — cos(§)]

dip




Constrained problem on the circle

Consider the Joukowski map z = ¥(¢) := 4(¢ + ¢!) that maps the exterior
of the unit circle, conformally to C \ [—1, 1].
Define v* by

1 | cos(p) — o

du*(ei’/’) =
2™\ Jl cos() — cos(§)]

dip

We show that ‘ .
UM ((e9)) = 20" (¢'%) + log 2,

where 4/* is the solution to the Problem II with 3 = cos(4), and conclude
from here that v* is optimal.



Thank you!
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