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Quadrature Domains

Quadrature domains (QD’s) are a special type of domain,
traditionally in C, where integrating some class of functions
becomes a finite linear combination of point evaluations of the
functions and their derivatives.

Usual test class is harmonic functions, but we want to use tools of
complex analysis. So we’ll use the Bergman Space
(square-integrable holomorphic functions.)



Quadrature Domains

Quadrature domains (QD’s) are a special type of domain,
traditionally in C, where integrating some class of functions
becomes a finite linear combination of point evaluations of the
functions and their derivatives.
Usual test class is harmonic functions, but we want to use tools of
complex analysis. So we’ll use the Bergman Space
(square-integrable holomorphic functions.)



QD for the Bergman Space

For us a QD will be a domain Ω ⊂ C with the following property:

there exist points z1, · · · , zn ∈ Ω, and

corresponding constants {cij}|i=n,j=J
i=1,j=0 ,

such that for any f ∈ H2(Ω):∫
Ω f (z)dA =

∑
i ,j cij f

(j)(zi ).

for Ω ⊂ Cn, replace j ’s with multiindices

The points are called ‘quadrature nodes’ and the integration
formula is called a ‘quadrature identity (QI).’
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Very short history

They were originally defined in the 1970’s because their
defining property was showing up in solutions to some
extremal problems with D. Aharanov and H. Shapiro. Davis
had previously mentioned them, unbeknown to
Aharanov/Shapiro.

QD’s which have a QI valid for harmonic functions, or valid
for integrable holomorphic functions were the original
subjects, and have an elegant theory. [Aharanov, Shapiro,
Gustaffson, Avci, Sakai etc.]

Very nice connections have been found to fluid flow, free
boundaries, subnormal operators, potential theory, Riemann
surfaces...

Building on some of this research, Bell discovered that he
could synthesize much of the introductory theory by using
QI’s which are valid for H2, by using the L2 tools of complex
analysis (i.e. the Bergman kernel and projection).
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Motivational Examples

Some examples:

The premium example is the disc. The harmonic mean value
theorem says that integration is a multiple of point evaluation
at the center. For example,

∫
D f (z)dA = πf (0).

The cardioid (quadratic image of a disc) is an example with
one node and two terms in the QI: the QI involves evaluating
a function at the node and evaluating the derivative at the
node.

The Neumann oval is another ‘order 2’ example: there are two
nodes, and in the QI the function is evaluated at each node.
(Neumann oval is the inversion of the exterior of an ellipse
through a circle).
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Interesting Properties

As an example of why QD’s are interesting, a few words about
extension properties in C.

Balayage: If a domain is viewed as a plate of constant density,
being a QD for harmonic functions (with positive coefficients
and no derivatives in the QI) has to do with the exterior
logarithmic potential extending harmonically inside the
domain, up to the quadrature nodes.

Or you can think about ‘sweeping’ the measure involved onto
the quadrature nodes.
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Analytic continuation: Consider z̄ defined on bd(Ω). If Ω is
real-analytic, Cauchy-Kovalevskaya says z̄ extends analytically
to a neighborhood of bd(Ω). In that case, being a QD for
holomorphic functions means that the function z̄ extends
analytically all the way inside Ω, except at the nodes. In other
words it extends meromorphically inside.

Then consider the Schottky double. Glue the domain to a
copy of itself along the boundary. Now you can proceed with
some Riemann surface theory.

For example, now z , z̄ extend from the boundary
meromorphically to the double; that means they depend
polynomially on one other on the boundary. So the boundary
of a QD is algebraic in the plane!
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In written proceedings following a QD conference [2005], M. Sakai
asked an interesting question:

What about higher dimensions?
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Current State

Answer: We don’t know too much. Some has been written about
QD’s for harmonic functions. (E.g. Lundberg and Eremenko
showed their boundaries can be worse than in the plane).

For holomorphic functions, Bell has a few ruminations, and Haridas
and Verma have a paper about approximating certain product
domains by quadrature domains.
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Motivation

This work hopes to build up some introductory results about QD’s
for H2 functions in Cn.

The motivation is to start by seeing how elegant results in the
plane might extend to several variables, by using the Bergman
kernel and projection.
So, we’ll start with some more overview of why QD’s for H2

functions are beautiful in the plane. Later, I’ll show the progress
I’ve made in pushing those ideas into Cn.
And I’ll point out when things don’t look too pretty.
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Background

First, something to recall: evaluating function and derivative values
can be accomplished with the Bergman kernel K :

Inner product against K (z ,w) reproduces H2 functions

Inner product against ∂α

∂w̄αK (z ,w)|w0 evaluates ∂αf
∂zα at w0.

But also,
∫
f =

∫
f · 1; whereas a QI would mean∫

f =
∑

iα ciαf
α(wi )

that means Ω is a QD if and only if the function 1 ∈ H2(Ω) is
a linear combination of the Bergman kernel and its derivatives
at some points wi . (Here as always, I’m going to assume Ω
has finite volume)
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Background: Bergman Span

We frame that idea in a definition:

Definition The Bergman span of Ω ⊂ Cn, a domain with finite volume, is
the linear span of the functions ∂αK(z,w)

∂w̄α |w0 as α varies over
multiindices and w0 varies over Ω.

Conclusion: Ω of finite volume is a QD if and only if the function 1
is a member of the Bergman span of Ω.
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Background: Disc Properties

The unit disc is a great place to live for a plethora of reasons: I’ll
name a few

The boundary is smooth, analytic, algebraic

The Bergman kernel is nice (rational, algebraic)

The Bergman span contains all polynomials

Conformal maps to other simply connected domains: Riemann
Mapping Theorem
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Background: Disc-like Properties

QD’s for H2 functions imitate the disc in many ways, and have
impressive conformal mapping properties. For us, the relevant
properties are:

Algebraic Boundary: only singularities possible are inward
cusps

Algebraic Bergman kernel

Bergman span contains all polynomials

Conformal maps between QD’s are algebraic

The only bounded simply connected QD’s are rational images
of the disc

Any smooth bounded domain is conformally equivalent to a
smooth QD which is arbitrarily C∞ close to the domain
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Background: Mapping Properties

There are two nice criteria for knowing when a conformal map
lands you in a QD:

If Ω has finite area and f : Ω→ V is a biholomorphism, then
V is a QD if and only if f ′ is in the Bergman span of Ω.

For nice bounded domains, the image of a conformal map is a
QD exactly when it is a ratio of Bergman span elements.



Several Dimensions

Those are the motivational properties in the plane. A couple of
them travel to Cn with no trouble, as noted by Bell:

If f : Ω→ V is a biholomorphism of finite-volume domains in
Cn, then V is a QD if and only if JCf is in the Bergman span
of Ω.

Ω is a QD if and only if 1 is in the Bergman span of Ω.

Why? The same reasoning as in the plane works for the
characterization of 1 being in the Bergman span. From there:

If f : Ω→ V is a biholomorphism, then h→ (JCf ) · h ◦ f , is a
Bergman Space isomorphism H2(V )→ H2(Ω). It’s also a
one-to-one correspondence between the Bergman spans of Ω
and V . You can ‘push forward’ and ‘pull back’ to switch
between the Bergman spans of Ω and V . The function 1
corresponds to JCf under this correspondence.
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Let’s start investigating several dimensions.



QDP’s

Fact: the property that all polynomials reside in the Bergman Span
on a QD in the plane fails miserably in higher dimensions, as we’ll
see later.

Forcing them to be there after all is a good way to get
some mapping properties; we make a definition:

Definition A QDP is a quadrature domain in Cn whose Bergman span
contains all holomorphic polynomials.
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First Results

Some results for QDP’s:

Cartesian Products: a product of n planar domains is a
QD(P) if and only if each of the planar domains is a QD.

Generalization from the disc: A product of bounded simply
connected domains Πn

1Ωj is a QDP if and only if it is a
rational image of the unit polydisc. (Exploit the
automorphism structure of the polydisc together with the
Riemann mapping theorem)

Another mapping result from the plane generalizes: If
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Unit Ball generalization

If Ω is any domain and f : Ω→ V is a biholomorphism, and
V is a QDP, then f is a Bergman Coordinate of Ω (all its
component functions are ratios of Bergman span elements).

That’s because 1 and ζj are in the Bergman span of V (ζ
being the coordinate on V ), and they pull back to JCf and
JCf · fj . So both those are in the Bergman span of Ω; now
divide them.

Corollary another nice generalization: if f : B→ V and V is a QDP,
then f must be rational, where B is the unit ball.

This follows since the Bergman kernel of the ball is rational,
and any map to a QDP must be a quotient of rational
functions.
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Circular Domains

Circular domains have a very good Bergman span: if Ω is bounded,
circular, and contains 0, then Ω is a QDP. In fact, inner products
with any polynomials give function and/or derivative values at 0.
This leads to another mapping result:

If Ω is circular, bounded, contains 0, and f : Ω→ V is
biholomorphic, then f is a polynomial mapping if and only if
V is a QDP with the special property that every polynomial
comes from the Bergman span elements corresponding to the
point f (0).
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What next?

We’ve seen that requiring all polynomials to reside in the Bergman
span provides just enough extra structure beyond the definition of
QD to recover some properties similar to the plane.

However, not every QD is a QDP in several variables. What types
of properties can we look for if we don’t have polynomials to rely
on?
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Smooth Density

One property we can try to recover without polynomials is ‘QD
density’. Recall that any smooth bounded planar domain is
approximable by smooth quadrature domains.

For the special case of smooth bounded convex domains in Cn, I’ve
made some progress in this direction.
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A mapping theorem

Smooth bounded convex domains are a special case of a particular
type of domain which I can show must always be biholomorphic to
some quadrature domain. Specifically:

Theorem

Ω ⊂ Cn must be biholomorphic to a QD if it meets the following
restrictions:

Ω is smooth and bounded

Ω satisfies Condition R (Bergman projection is regular up to
the boundary)

Ω’s projection onto the first n− 1 dimensions is pseudoconvex.

Ω’s cross sections in the nth coordinate are all convex

Ω contains the graph of a smooth function over the first n− 1
coordinates.
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A few words about the proof

Why the weird conditions?

Remember that if f : Ω→ V , then V will be a QD if JCf is in
the Bergman span of Ω.

So the search for a QD biholomorphically equivalent to Ω is
the same as the search for a one-to-one map whose Jacobian
is in the Bergman span.

Density of Bergman span comes from Condition R, so choose
a Bergman span element g smoothly close to 1, then try to
antidifferentiate it in the zn direction. Call the
zn-antiderivative G .

Make up a mapping f = (z1, z2, · · · , zn−1,G ). Show it’s
one-to-one; note that its Jacobian determinant is
1 · 1 · · · 1 · · · 1 · ∂G∂z̄n = g , which is in the Bergman span.

The criteria needed to pull off that stunt are the conditions in
the theorem.
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Smooth approximation by QD’s

It turns out that smooth bounded convex domains meet all the
requirements. So they’re all biholomorphic to quadrature domains.

And it gets better! If the smooth function whose graph is
contained in your domain can be chosen holomorphic, then the
proof ends up showing that the domain is smoothly approximable
by QD’s. For example, any smooth bounded convex domain
symmetric about {zn = 0} is smoothly approximable by QD’s.
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Counterpoint

Next, we’ll take a look at some properties that don’t transfer well
to several dimensions.

First is the fact that’s been alluded to already, that not every
QD will contain every polynomial in its Bergman span. In
fact, a QD can include infinitely many polynomials in its
Bergman span, and exclude infinitely many others.

You can map the polydisc with a bad-looking mapping whose
Jacobian nevertheless is just 1. The image is a QD since the
Jacobian is in the Bergman span, but the badness of the mapping
itself will prevent some polynomials from ending up in the
Bergman span.
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Bergman Coordinate Failure

In the plane, when a mapping of Ω is a Bergman coordinate,
the image is a QD. This fails in several variables; you can even
map a QD by a Bergman coordinate and fail to land in
another QD.

You can map the polydisc with a rational mapping that mixes
up the variables in such a way that the Jacobian, although
rational, doesn’t belong to the Bergman span.
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Pathological Boundary

In the plane, a QD will have an algebraic boundary, possibly
having an inward cusp. In several variables, the boundary of a
QD can be basically as bad as you want.

Recall that circular domains containing 0 are QD’s; they’re
even QDP’s. Among those are complete Reinhardt domains
(which you can plot in |zj | coordinates.) You can make the
boundary as bad as possible in certain directions.
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Circular Domains

In several dimensions, circular domains containing the origin all
have the property that their QI features only one point, 0. Bell
asked whether the only other possible ‘1-point’ QD’s in several
dimensions are images of circular domains under maps with
constant Jacobian.

The answer is no; you can map a polydisc via a mapping with
linear Jacobian and end up in a QD whose QI has only one point
(but possibly many terms).
If we further insist that the QI should have only one term, then the
question is open.
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Work to be done

Ongoing questions:

Can all convex smooth domains be approximated by
quadrature domains?

Are all pseudoconvex domains biholomorphic to quadrature
domains? (Is there a ‘substitute Riemann mapping theorem’
available?)

In the plane I can show that nearby conformally equivalent
quadrature domains can be transformed into one another with
a homotopy where each intermediate shape is also a
quadrature domain. Can you deform them that way in several
variables as well?



Thanks!


