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Uncertainty principle

fel?(R), f(¢)= / f(t)e 2™t gt
R

Both f and f cannot decay fast.

Hardy:
f(t) = O(e™), F(&) = O(e—7€2) = f(t) = Ae ™"

Pattern of the proof:
e 7 is an entire function, |¥(¢ + in)| < Ce™;
o g(¢):=e™F(C) is of order 2 and bounded along R U /R
e next we have to apply convexity arguments
(Phragmen-Lindelof)
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Phragmen-Lindelof (trigonometric convexity)

Let 1% > 0, Ap = {C, | arg C| S 7T/2p}, (we will have p =2 or 1 only ),
G € Hol(A,)

Definition: H is of order p > 0 and type 0 > in A, if

log log{max|¢| </, |H(re'®)[} -

limsup
r—00 Iog r

log{max g/, |H(re'®
limsup g{max|g|<r/p |H( )|}§a;
r—oo rP

Loosely speaking: |H(z)| < Cel*”
Growth along separate rays - indicator function:

L log | (re’®)| B
ha(¢) = limsup —=—="=—=, 0 = |¢r\n<3?§phc(¢)'
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Phragmen-Lindelof (trigonometric convexity)

If H has order p in A, its behaviour in the whole angle
is defined by the behaviour on the boundary rays.

In particular
ho(—/2p) + ho(/2p) > 0
If " =" then hy(#) = acos pd + B sin pb;

If o =0 and H is bounded on JA, then H is bounded in A,.
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End of the proof (p = 2)

7€+ in)| < Ce™, g(C) := e™F(C) = hg(h) < 7 cos? .
g bounded on RU /R = hg(0), hg(m/2) =0
= hg(0) = asin26, 0 € (0,7/2)

asin20 < cos’d, 6 € (0,7/2) = a=0

= g has zero growth with respect to order 2...
Now it is easy to complete the proof.
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Continuous Schrodinger evolution

Oru(t, x) = iAu(t, x),

where uv: Ry x R — C, A is the Laplacian. Solution:

2
u(t, x) = de

/F

52

is ixe
u(t,x) e \/7/ u(0,¢) e e d¢

unimodular unimodular
O = iAu, |u(0,x)] + |u(1,x)| < Cexp(—x?/4),
(%) = u(0,x) = Aexp(—(1 + i)x?/4)
L. Escauriaza, C. E. Kenig, G. Ponce and L. Vega (2006)
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Further results

L. Escauriaza, C. E. Kenig, G. Ponce and L. Vega (2006-15)
For any bounded real-valued V/(x,t) and any a > 1/4

Oru = iAu+ Vi, |u(0,x)|+ [u(1,x)| < Cexp(—ax?),

() = u(t,x)=0

v

general elliptic operators

several dimensions

v

v

non-linear equations

v

parabolic equations
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Machinery: Logarithmic convexity for weighted norms +

Carleman estimates

Hadamard's three circle theorem (harmonic measure estimates)
Logarithmic convexity of the mean values of harmonic functions
over concentric spheres

Elliptic PDE: S. Agmon (1966); Landis and others (1980s),
Garofalo and Lin (1987), Brummelhuis (1995)

Schrodinger equation: Escauriaza, Kenig, Ponce, Vega

Hr(t) = or(x)u(t, )3,  dr(x) = exp(ylx + Re(1 - t)?)

0% log Hr(t) > —R*(47) "
exp(—R*(167) ") Hr(1/2) < Hr(0)?Hr(1)"/? = H(0)/?H(1)"/?

Let R — oo and get a contrudiction when ~ > .
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Discrete Schrodinger evolutions

Equation
Oru = i(Aqu + Vu),

where u: Ry x Z — C and Ay is the discrete Laplacian, that is,
for a complex valued function f : Z — C,

Agf(n) :=f(n+1)+f(n—1)—2f(n).

We assume that the potential V = V/(t, n) is a real-valued
bounded function.
Uniqueness ?

|u(0, n)| + |u(1,n)| < Cm(n) = u=0.
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Discrete potential theory: old and new

Chang and Yau, 1997, 2000 (Calculation/estimates of the discrete
heat kernels)

Three spheres theorem and logarithmic convexity for weighted
norms of discrete harmonic functions:

Gaudi and Malinnikova (Compt. Methods and Function Th, 2014)
Lippner and Mangoubi (arXiv 2013, to appear in Duke Math. J.)

Heisenberg's uncertainty, interpretation for discrete Schrodinger
evolution: Fernandez-Bertolin (arXiv 2014, to appear in AHCA)
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» Model cases: precise results and guesses for more general
cases.

» For more general cases: prove the logarithmic convexity of the
norms

H(t) = [[¢(n)u(t, n)l2

for appropriate ¢ and thus obtain uniqueness results
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Free discrete Schrodinger

Proposition
Let O;u = iAqu, and

¥
160, )], |u(1,n)| < C— < € > ~ (1) ~ 27 "(nt) L.

VInl \ 20|

Then u(t,n) = Ai"e=2J,(1—2t) foralln € Z and 0 < t <1,
for some constant A.

Comment: Another speed of decay !
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Compactly supported potentials

Theorem
Letu:Ry xZ — C,

Oru = i(Aqu + Vu),

where the potential V' does not depend on time and also V(n) # 0
just for a finite number of n's. If, for some ¢ > 0,

e

)n> s n>0,t€{0,1},

e = € (s

then u = 0.
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Compactly supported potentials

Theorem
Letu:Ry xZ — C,

Oru = i(Aqu + Vu),

where the potential V' does not depend on time and also V(n) # 0
just for a finite number of n's. If, for some ¢ > 0,

e n
— i1
)n> , n>0,te{0;1},

e = € (s

then u = 0.

Jost solutions; one-sided estimates, entire functions...
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General potentials

Theorem
If u is a strong solution of

Oru = i(Aqu+ Vu)
where V(t, n) is a real-valued bounded function,
IC+ [a)) D (0, m) |2, (|1 + ) EHDu(L, )2 < +oo,

then for v > o, then u = 0.
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General potentials

Theorem
If u is a strong solution of

Oru = i(Aqu+ Vu)
where V(t, n) is a real-valued bounded function,
IC+ [a)) D (0, m) |2, (|1 + ) EHDu(L, )2 < +oo,

then for v > o, then u = 0.
Comments: 1. One can takeyo = (3 4 /3)/2 but this cannot be

the best.

2. Dream weight: m(n) = J,(1) = ¢~1(n). (free Schrédinger, heat
kernel)

3. Strategy of the proof: improvement of improvement of
improvement
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Step 1: First energy estimate

Weight function:
Ya(t) = {$alt; M)}nez = {(1+ )70} oy
H(t) == [[{va(t, n)u(t, n)}H%

Proposition
Let V = Vi +iVs, with Vi, V5 1[0, T] x Z — R and V5 bounded
and F : [0, T] x Z — C bounded,

Oru(t, n) = i(Au(t,n) + V(t,n)u+ F(t,n)).

Assume that {1),(0, n)u(0, n)} € ¢?(Z) for some o € (0,1]. Then

H(T) < T (HO)+ [ (s (s, B s
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Step 2: Estimates with an auxiliary weight

Proposition
Let v > 0. Assume that u is a strong solution of

Oru = i(Aqu + Vu)
where the potential V' is a bounded real-valued function. Let also
1+ |3yt n)|l2 < 400, t e {0;1}.

Then, for all t € [0,1], ||(1 + |n])Y@+"Du(t, n)|2 < 4oo0.
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Step 2: Estimates with an auxiliary weight

Proposition
Let v > 0. Assume that u is a strong solution of

Oru = i(Aqu + Vu)
where the potential V' is a bounded real-valued function. Let also
1+ |3yt n)|l2 < 400, t e {0;1}.

Then, for all t € [0,1], ||(1 + |n])Y@+"Du(t, n)|2 < 4oo0.

weight and logarithmic convexity
w(n) = e kp(n) = (1 +[n]) In®(1+ |n]),

where 1/2 < b < 1, then b — 1.
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Step 3: Final convexity estimates with a parameter.

Carleman estimate

¥(t, n) = et where
k(t,n) =~v(|n| + Co + Rt(1 — t))In(|n| + Co + Rt(1 — t)).

Co being large enough.

As before 1(t, n) = (") and H(t) = |Ju(t, n)y(t, n)||3
Log convexity:

Lemma

For every v > (3 + /3)/2 there exists C(v) such that for
Co > C(v) and R(t) = Co + Rot(1 — t) we have

4
92(log H(t)) > 5 il SRolog Ro — CiRo — Gz,

where C; and C, depend on v and ||V||« only.
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Compactly supported potentials

Theorem
Let u: Ry xZ — C,

Oru = i(Aqu + Vu),

where the potential V' does not depend on time and also V(n) =0
for |n| > N. If, for some ¢ > 0,

|u(t,n>rsc< )> n>0, t=0.1,

(2+¢

then u = 0.
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Compactly supported potentials

Jost solutions: - eigenfunctions of Ay
Ager(0) = MH)et(0), NO)=2-6—-071,
et(0,n) = 6", for +£n> N.
e (0,n) = a(0)e™ (6, n) + b(A)eT (671, n).

Fact:
a(0), b(h), et (0, n) - all are rational functions.
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Compactly supported potentials

Spectral Fourier transform:

d(t,0) =52 e (0,n)u(n,t) well-defined for € T, t > 0.

n=—oo

i0:®(t,0) = i e (6, n)Aqu(n, t) = (2 — 0 — 67 1)d(t,0)

n=—oo

Therefore ' )
®(1,0) = e 209" (0,6), H € T.

u(n, 1), u(n,0) decay = this relation can be extended to the whole
C !
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Compactly supported potentials

Behaviour at oo:

0

d(v,0) = Ze(@n Ze (@, n)u(n,v)

0) i et (0, n)u(n,v) = A,(0) + B,(9) + C.(0), v =0,1.
n=1

Only B contains infinitely large positive powers of § =

log |A(re’® log |A(re’®
r

r—o0 r r—00
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Compactly supported potentials

Estimate of the solutions u(v, n) yields estimates of B, (6):

lu(v,n)| < Ce"(2+en)™", v=0,1=

log | B, (re’®
|imsup°g|r(re)’ <1/(2+¢), ¢ €[0,27].

r—oo

Phragmen-Lindelof =

log | B, (re'®
Iirr_m}inng‘r(re)’ > —1/(2+¢), ¢ € [0,27];
and ”
log |® (v, re
Iimsupw <1/(2+¢), ¢ € [0,2n]
r—o00
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Finallly

Take ¢ = /2, re’® = iy:

log |®(0, i | —i(y—=1/y) log (1. i
y—00 Yy y—00 y y—300 y
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