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Local regularity

Let f : R→ R and α > 0, we say that f ∈ Cα(x0) if there exists a
polynomial P of degree less than α such that

|f (x)− P(x − x0)| ≤ C |x − x0|α, |x − x0| < 1.

The local Hölder exponent is hf (x0) = sup{α : f ∈ Cα(x0)}.

EXAMPLE: R(x) =
∑∞

1
1
n2 sinπn2x ,

Riemann function, non-differential at x 6∈ Q (Hardy, Littlewood)

Jaffard (1996) computed hR(x) explicitly,
1/2 ≤ hR(x) ≤ 3/2 depends on the rate of rational approximation.
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Wavelet transform

Local regularity can be measured by the decay of the wavelet
transform

Wf (a, b) =
1
a

∫
R
f (t)ψ(a−1(t − b))dt,

where ψ is a "wavelet-function", ψ is smooth enough and∫
ψ(t)dt = 0.

Roughly speaking, f ∈ Cα(x0) iff

|Wf (a, b)| ≤ Caα(1 + a−1|b − x0|)α.
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Spectrum of singularities

Let
Ef (β) = {x ∈ R : hf (x) = β}

df (β) = dimH(Ef (β)),

df is called the spectrum of singularities (multifractal spectrum) of f .

EXAMPLE:
dR(β) =?
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Local dimension of a measure
Let µ be a positive measure on Rm−1, we define the (lower) local
dimension of µ at x0 as

hµ(x0) = lim inf
r→0+

log µ(B(r , x0))

log r
.

When m = 2 then hµ(x0) = hF (x0), where F is the anti-derivative of
µ.

(almost)

We will instead work with the harmonic extension u = P ∗ µ, we
define

Fγ(u) = {y ∈ Rm−1 : lim sup
t→0

u(y , t)tγ > 0}.

Exercise
The following estimate holds dimH Fγ(u) ≤ m− 1− γ, and it is sharp.
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Generalized local dimension
Let v be increasing on [0, 1), λ(t) = tm−1v(t) be increasing and
limt→0 tm−1v(t) = 0.

Theorem (K.S. Eikrem, M., 2012; F. Bayart, Y. Heurteaux, 2013))

(i) Let u be a positive harmonic function in Rm
+, we define

Fv (u) = {y ∈ Rm−1 : lim sup
t→0+

u(y , t)

v(t)
> 0}.

Then Fv (u) is a countable union of sets of finite Hλ-measure.
(ii) There exists a positive function u such that u(y , t) ≤ v(t) and
Hλ(Ev (u)) > 0, where

Ev (u) = {y ∈ S : lim inf
t→0+

u(y , t)

v(t)
> 0}.

For a typical (Baire category) positive measure the set of given
growth has exactly this "Hausdorff dimension" .
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Classes of harmonic functions of controlled growth

Let v(t), t > 0, be a positive increasing continuous function and
assume that limt→0+ v(t) = +∞. We define

kv = {u : Rm
+ → R,∆u = 0, u(y , t) ≤ Kv(t)},

and
hv = {u : Rm

+ → R,∆u = 0, |u(y , t)| ≤ Kv(|t|)}.

Similar spaces can be considered in the unit disc (ball).

For any v there exists u ∈ hv such that u(ry)→∞ for a.e. y ∈ S
(N. Lusin, I. Privalov; J.-P. Kahane, Y. Katsnelson). This behavior is
very different of the one we have seen for positive harmonic functions.
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Some examples and constructions

Our main examples of weights are v1(t) = t−α and v2(t) = | log t|β.
Examples of corresponding functions in the unit disc:

u(z) = <
∑

n

nα−1zn, u(z) = <
∑

n

2nαz2n

u(z) = <
∑

n

nβ−1z2n
, u(z) = <

∑
n

2βnz22n

Another way to produce (regular) examples is to work with
generalized Cantor sets on S.

However there are much less regularly
behaving functions in hv .
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Sets of extremal growth
Let u ∈ kv , we consider

E+
v (u) = {y ∈ S : lim inf

t→0

u(y , t)

v(t)
> 0}.

E+
v (u) consists of the end points of vertical rays along which u grows

as v . Similarly

E−v (u) = {y ∈ S : lim sup
t→0

u(y , t)

v(t)
< 0}.

Theorem (Borichev, Lyubarskii, Thomas, M., 2009)

Let m = 2. Assume that for any ω > 0, λ(t) = o(t| log t|ω), (t → 0).
Then for each u ∈ klog we have Hλ(E+(u)) = Hλ(E−(u)) = 0.

A similar result is true for any m ≥ 2 and any v satisfying the
doubling condition v(t) ≤ Cv(2t) (Eikrem, M., 2012).
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Sharpness of results

Theorem (Eikrem, M., 2012)

For any α > 0 there exists u ∈ hv such that Hλ(E±v (u)) > 0 for
λ(t) = tm−1v(t)α.

If v(t) = t−γ for some γ > 0 and u ∈ hv , then Hλ(E+(u)) = 0 and
Hλ(E−(u)) = 0 when λ(t) = tm−1 log 1

t .
On the other hand there exists u ∈ hv such that dimE+(u) = m − 1.

Problem
Estimate the size of the sets E±w (u) when u ∈ hv and w is "smaller"
than v.
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Makarov’s law of the iterated logarithm

Consider the following function

u(z) = <
∑

n

z2n

This is a sum of independent random variables, it satisfies the law of
the iterated logarithm.
Makarov: Suppose that u(z) ∈ B (Bloch space), i.e.

|∇u(z)| ≤ C (1− |z |)−1, ∆u = 0,

then

lim sup
r→1−

|u(re iφ)|√
log 1

1−r log log log
1

1−r

≤ C

for a.e. φ.
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A weighted average

We now turn to our second examples

u(z) = <
∑

n

2nz22n

.

Its typical radial behavior is oscillation between ±c | log(1− r)| and it
can be viewed as the sum of independent random variables (with zero
means). It oscillates!
To measure such oscillation of functions in hlog we introduce the
weighted integral

Iu(R , φ) =

∫ R

1/2

u(re iφ)

(1− r)
(
log 1

1−r

)2dr , R ∈ (0, 1), φ ∈ (−π, π).

Clearly Iu(R , φ) ≤ I|u|(R , φ) ≤ C log | log(1− R)|. We show that Iu
grows much slower.
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A law of the iterated logarithm

Theorem (Lyubarskii, M., 2012)

There exists K such that if u is a harmonic function in D satisfying

|u(z)| ≤ log
e

1− |z |
,

then

lim sup
R↗1

Iu(R , φ)

(
log log

1
1− R

log4
1

1− R

)−1/2

≤ K

for almost every φ ∈ (−π, π].
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Premeasures and martingales

It was proved by B.Korenblum that u = P ∗ µ, where µ is a
premeasure that satisfies |µ(I )| ≤ |I | log 1/|I |.

We consider

gn =
∑

I∈|I |=2π2−n

1I
µ(I )
|I |

,

where I are dyadic subintervals of (−π, π). We define

dj = 2−j(gj − gj−1), and fn =
n∑

j=1

dj .

Then the martingale {fn} obeys the Kolmogorov’s law of the iterated
logarithm. An approximation of the Poisson kernel by the box kernel
suggests that Iu(1− 2−2n

, ·) can be approximated by fn above.
We use decomposition into atoms and careful error estimates instead,
however our argument is based on the Korenblum premeasures.
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n∑

j=1

dj .

Then the martingale {fn} obeys the Kolmogorov’s law of the iterated
logarithm. An approximation of the Poisson kernel by the box kernel
suggests that Iu(1− 2−2n

, ·) can be approximated by fn above.
We use decomposition into atoms and careful error estimates instead,
however our argument is based on the Korenblum premeasures.
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Besov Spaces B−s,∞
∞

For s > 0 we have T ∈ B−s,∞
∞ if and only if ‖Py ∗ T‖∞ ≤ Cy−s ,

y < 1. For s = 0 the corresponding Besov space B0,∞
∞ = B is the

Bloch space and T ∈ B if and only if ‖∇(Py ∗ T )‖∞ ≤ Cy−1.

Wavelet transform: T ∈ B−s,∞
∞ with s ≥ 0 if and only if

WT (a, b) ≤ Ca−s (there is a freedom to choose the wavelet function
you like).
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Spaces of boundary distributions

We define the space of distributions

D∞(v) = {T : |Py ∗ T | ≤ C (T )v(y)}

(boundary values of functions in hv ).

Theorem (Eikrem, Mozolyako,M.,2014)

Let T be a distribution of finite order s that admits convolutions with
the Poisson kernel and let W be the wavelet-transform with some
smooth enough wavelet ψ. Then T ∈ D∞(v) if and only if
‖WT (a, ·)‖∞ ≤ C (T )v(a).
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Oscillation for general weights

As above, we describe the oscillation by the following weighted
average

Iu,v (x , s) =

∫ 1

s
u(x , y)d(v−1(y)).

Theorem (Eikrem, Mozolyako, M., 2014)

Let u ∈ hv then

lim sup
y→0

|Iu(x , s)|√
log v(s) log log log v(s)

≤ C

for almost every x ∈ Rm−1.
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Open problems

1 The last result provides some weights w (w << v) for which
Hm−1(Ew (u)) = 0 when u ∈ hv but we don’t know exact
description.

2 Suppose that Hm−1(Ew (u)) = 0 for any u ∈ hv can we estimate
the dimension (as for positive measures)?

3 Construct an example of a pair of weights v ,w and u ∈ hv such
that Hm−1(Ew (u)) > 0.

4 Describe (typical) local regularity of a premesure that satisfies a
one-sided estimate µ(I ) ≤ |I |v(|I |).
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Answer

EXAMPLE:

dR(β) =


4β − 2, 1/2 ≤ β ≤ 3/4
0, β = 3/2
−∞ otherwise
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Thank you

Thank you for your attention
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