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MULTIPLE ORTHOGONAL POLYNOMIALS

Given two positive Borel measures 11 and o on R, and a multi-

index 77 = (ni,n2) € N?, the monic polynomial P; of degree
7| = n1 4+ ng is a type II multiple orthogonal polynomial if it
satisfies

/Pﬁ(x)xkd,uj(x):(), E="0,1,. o m, IR W

These polynomials appear as denominators of the simultaneous or
Hermite—Padé approximants to a set of two functions: the Cauchy

transform of p;’s L
- iz
Hj(z) = / :

% b

We seek polynomials P; and Q5 5, 7 = 1,2, such that

R j(2) = Pr(z)p(2) — Qrj(2) = O (Z_nj_l) y &7 0



MULTIPLE ORTHOGONAL POLYNOMIALS

Given two positive Borel measures 11 and o on R, and a multi-

index 77 = (ni,n2) € N?, the monic polynomial P; of degree
7| = n1 4+ ng is a type II multiple orthogonal polynomial if it
satisfies

/Pﬁ(x)xkd,uj(x):(), E="0,1,. o m, IR W

These are |71| equations for the |77| unknown coefficients of Pj.

If this system has a unique solution, then we say that n is a normal
index for type II. In this case,

/Pﬁ_gj (@mm di (o) 20—



MULTIPLE ORTHOGONAL POLYNOMIALS

Existence!

I —————

Normality?

L

These are very difficult questions to address in the full generality:.

There are easy to produce examples when the answer is No.

But there are classes of pairs of measures (u1, o) for which the
answer is Yes.



NIKISHIN SYSTEM

Start with two measures, 07 and o5, supported on R, such that
their supports are disjoint,

@ 02
and define
duy = doy, dm:&}dal

5 (2) = / ‘j’_@
>
M1 H2
\

(w1, o) is a Nikishin system of measures.

where (recall)

s
o

For such class of measures, many multi-indices are normal (G. Lopez
Lagomasino).



NIKISHIN SYSTEM

01 02

A crucial fact is that we can work out an additional set of orthog-
onality conditions. For instance, there exists a monic polynomial
qn, of degree ny and all its zeros on supp(os) such that

d
/ =* Py () LAGIE S k=0,... .6 B
supp(o1) dn (CC)
=l
supp(oz2) Pﬁ(x)

where fz is the Cauchy transtorm of a certain explicit function.

S0, we can “trade” two orthogonality conditions on the same inter-
val for a full set of orthogonality conditions on disjoint intervals,
but with respect to varying measures.



NIKISHIN SYSTEM

01 02
A crucial fact is that we can work out an additional set of orthog-
onality conditions. For instance, there exists a monic polynomial
qn, of degree ny and all its zeros on supp(os) such that

d
/ =* Py () LAGIE S k=0,... .6 B
supp(o1) dn (CC)
=(x)d
/ ot ()2 2520) g o
supp(o2) Pﬁ(x)

where fz is the Cauchy transtorm of a certain explicit function.

The asymptotic zero distribution of the multiple orthogonal poly-

nomials Pz is described in terms of an associated vector equilib-
rium problem.



NIKISHIN SYSTEM

Recall that for a measure i1 we define its logarithmic potential

Vh(z) = / log -

|z — |

Given a polynomial P, we also define its normalized zero-counting
measure

1
Vp .— (Sa;
deg P P(mz)_o

in such a way that

1
deg P

log | P(2)] = =V (2).



NIKISHIN SYSTEM

The orthogonality conditions

d
/ PP ()8 o g
supp(o1) dn (CC)
—(2)d
[ @D o oo, -1
supp(c2) Pri(x)

imply that, in the simplest case, and assuming that ny = ny = n,
s, e =108 e A0z =g
n n

where |A1| = 2, |[A\2| =1, supp(A;) C supp(o;), j = 1,2, and

— W5 — SO A5 E Supp()\i)v

> w;, z € supp(o;) \ supp(\:),

2V (z) — V% (x) {

L2, i
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MULTIPLE POLLACZEK POLYNOMIALS

We have two absolutely continuous measures dy;(z) = w,;(x)dx
on R, = |0, +00) given by

dzx 1 dx tanh 77\2/5

wi(z) = 0 Ual(T) = e Jz e ws ()

sinh . cosh

Decomposing tanh(7wz/2)/z into simple fractions, we get

tanh == :/dag(a:)
NZ 2

4
ot == ; E 5—(2k+1)2
kEZ.|_

Weuwsan gxpesth tfoonadsd iNidisthim gnestionts BUHe(Vestgysiquil ibriun
brobldead amdexiigraalifielibdrerming from the need of rescaling) and
an upper constraint (originated by the discrete orthogonality).

where



Weak asymptotics

.



-QUILIBRIUM PROBLEM

We consider the diagonal sequence nqy = ny = n, and the rescaled
polynomials

Qn(ﬁ) = Cnpﬁ(4n233) - xQn—l—lower degree terms, ¢, = (4n2)—2n

Taking into account that

1
p(x) = lim = log (| sinh(nmv/2)|/?) = Tv/a
and that for T' < 0,
[ k:(2k + 1)% < 4n?|T
lim —dos ,(t) = lim ik (2k+1)° < 4n7|T1} :/ di|
nJir,0) 21 n€2N n 701 24/]1]

we arrive at the following equilibrium problem for the weak-* limit
of the zeros of (),,.



-QUILIBRIUM PROBLEM

A1, Ao: [A1| =2, supp(A1) C Ry, and [As| =1, supp(As) C R_,




-QUILIBRIUM PROBLEM

A1, Ao: [A1| =2, supp(A1) C Ry, and [As| =1, supp(As) C R_,

)\2 )\1

such that with ¢(z) = 7w/ > 0 R,



-QUILIBRIUM PROBLEM

A1, Ao: [A1| =2, supp(A1) C Ry, and [As| =1, supp(As) C R_,

O

)\2 )\1

such that with ¢(x) = mv/x > 0 Ry, and do(z) = ; da‘: i reR_,
7




-QUILIBRIUM PROBLEM

A1, A2: [A1| =2, supp(A1) C Ry, and |As| =1, supp(Az) C R_,
dx

such that with ¢(x) = m/x > 0 Ry, and do(z o x€R_,
i

21//\1(@V/\Q(x)JrSO(Qf){_w7 e p+:< : )5

> e dh Vi — 1|




-QUILIBRIUM PROBLEM

A1, A2: [A1| =2, supp(A1) C Ry, and |As| =1, supp(Az) C R_,

JP /)

such that with ¢(x) = m/x > 0 Ry, and do(z o Lz eR_,
i

21//\1(33')V/\Q(x)JrSD(Qf){_w7 e p+:< : )5

> W, T > P4, Vi — 1|
5
—() = s
2V 2(z) — VM (z) St p_ = — V51
<0, me im0 9

and )\2 § ors



WEAK ASYMPTOTICS

A1, Ao: [A1| =2, supp(A1) C Ry, and [As| =1, supp(As) C R_,

Then,

limvg, = A1/2

In particular,

i [Qu(2)®% = exp (~374(2)) . 2 €€\ [0,p4]

This is a weak exterior asymptotics for (),,’s.



{ Whatabout |
| the strong
asymptotics? |



RIEMANN-HILBERT CHARACTER

Strong asymptotics is based on the following RH.
tion of (),,’s:

Find Y (z) € C*>*° analytic in C \ R such that
e on R,

15 oy () S e G
Ydlapll = Ve e B 1 0
1+ 0 0 1
where T

e As z 00, 2z€ C\R_,

/ATION

P characteriza-

)

Y(z) = (I+0(z™")) diag (*", 27", 27™)

S =0 (1 272 | |2]7Y2 ), 20, z e CHRIE

Then Yy, = Q,,!



BIE R-1 S| EEPEST DESCEN [T ANAERSS

Idea of the asymptotic analysis:

Start with Y = get an asymptotic expression for Y

T
U
conclude that l

Sfeg) = I
I+ small = S such that
Si(2) =S_(z2)(I+ small)

This is just a roadmap.

Along this path, the equilibrium measures A1, Ay should appear,
but not only. ..



BIE R-1 S| EEPEST DESCEN [T ANAERSS

Step 1: create 2 X 2 blocks in the jump matrix

1™ g (o e
NER =Y (). {0 1 0
0 0 1

Standard procedure for the Nikishin system: use the ratio

W2 n

= 09
W1 n

But in our case this function is meromorphic with poles on R_.
Bad news!

Instead, we use the specific properties of the weights w; .



e R-H STEEPEST DESCEN I ANZERSES

Define v = v(z) := exp (72'/2), 2 € C\R_, and

1 —1/(21/2 1 -
AL(Z) o <21/2 /1(/2 )> ; AR(Z) == (21/2 /1 1

Then, X = X, is holomorphic in C\ (RUATUA™), and
X (2) = X_(2)Jx(2)



ST




ST




ST




ST




BIE R-1 S| EEPEST DESCEN [T ANAERSS

Step 2: normalization at infinity:.

Here we use our equilibrium measures Ay and Ay!

We define the g-functions
5(2) = [ loglz — D\ (8), 5 =17
and take
U(z) = const X (z) diag (€—n<gl<z>+w>7 (91 (2)=92(2)) 6”92(Z))
w a constant (the “equilibrium constant”).

This transformation gives us jumps of U that are uniformly close
to I, except at (—oo,p_| and [0, p.].



THE R-H STEEPEST DESCENT ANALYSIS
Step 3: lens opening.

We need an additional transformation in order to “peel oftf” all
the irrelevant jumps.

We factor the jump on |0, py| and replace it by three consecutive
jumps (two on the newly introduced curves):

At this point, let us ignore all the jumps that are uniformly close
to I. We are left with a model problem that should capture the
main features of the current RH problem.

This is what is usually called the global parametrix for our prob-
lem.

It will be used to kill the last non-trivial jumps and get to our
dream: to have all jumps “almost I”.



TH

Step 4: ¢l

0|

We seek IV,

N, (z) = N_(x) (

N (z)

where

R-MH S| EEPES T DESCEN T ANAEESES
parametrix.
omorphic in C \ ((—oo,p_] U |0,py]), such that
0 4 0
—1/4 0 O) , x € (0,py),
Q= )]
1 0 0
N_(z)[0 o0 —1/2z* |, ze (—00,p_)
0 2-? 0
(I an 0(2_1)) ((1)ALO(z)> as z—> o0, z€C\R
s i
AL(z) = <211/2 1/1(32 )>

pal

hol




e R-H STEEPEST DESCEN I ANZERSES

Step 4: global parametrix.

This RHP is solved using the Riemann surface R constructed
gluing the three copies of C, as this:

R1

0
0) 9 T € (Oap+>7
1

0
~1/@?) |, =€ (—o0,p2),
0

N

/ I 'b’%’AL(é)) as z—r o0, z€C\R,




TH

E R-H

We use the exp.
Riemann sphere

e

STEEPEST DESCENT ANALYSIS
icit conformal mapping between R and the (-
e

L)

Z

Ri1

P+

Ro
Ro 7% 3 Rl
P+ > . >

e

/
/




THE R-H STEEPEST DESCENT ANALYSIS
We use the explicit conformal mapping between R and the (-
Riemann sphere 14+

ey

There are three inverse functions to z = z((),

G =1-2-2+0 (%)

%GR 23
1 1 3 3 1
L (—3>
1 1 3 3 1
(3(2) = A | D | 2 825/2 O(_:%)
as z — 00.

After some manipulations we can simplify the jumps even further,
getting to a new matrix, V...



e R-H STEEPEST DESCEN I ANZERSES

N =

0
and a prescribed behavior as z —



BIE R-1 S| EEPEST DESCEN [T ANAERSS

Ri1
0 P+
R
b= 0 P+ U : >
R3 \
o ©
Z________ /

We seek N in the form

i SGIE) Gl aiGsla))
N(z) = | F2(C1(2)) Fa(Ca(2)) Fa(C3(2)) |
sG@ll s Rl Fe(Ca(z)

where F; are functions in ¢ with quadratic branching at the images
of the branch points of R, selected to satisfy the condition at
infinity. They can be computed explicitly.



e R-H STEEPES T DESCENT AN

For example,

C3/2

Fl(C) e (Cz _I_C_ 1)1/27

They can be computed explicitly.



BIE R-1 S| EEPEST DESCEN [T ANAERSS

Step 5: local analysis at the end points 0 and p.

In order to get a close-to-I behavior of all jumps on the whole C,
we still need to solve a model problem at these points.

The solution i1s different from IV.

o At p4+ (“soft edges”), it is written in terms of the Airy function.

e At 0 (“hard edge”), it is written in terms of the modified Bessel
functions Iy and Ky, and the Hankel functions Hé” and Héz).

This 1s more or less standard.

Step 6: last step!

Using our “parametrices” (solutions to the model problems) we
finally arrive at a RH problems for a matrix /£ whose jumps are
O(1/n) close to I in C uniformly.

1
We conclude that R(z) =1+ O < ) , n — 00
n(|z] +1)




1If you are still with}
me, it is time to §
wrap up...

[§



BIE R-1 S| EEPEST DESCEN [T ANAERSS

We have our plane C split into different regions by these contours:

In each domain, unravelling our transtformations, we get an ex-
pression for the original matrix Y.

For instance, assume that z lies in one of the unbounded compo-
nent of the complement to these curves. Then

1
@ —diac(c “,1,1) [T+ O
() =ding (7 1.1) (1+0 (Lot ) )
« N (z)diag (en(gl(z)—l—w) o—n(91(2)—92(2)) 6—ng2(z)) S ()
9 ] : 3




e R-H STEEPEST DESCEN I ANZERSES

It remains to see what this expression means for Y;; = Px.

Here is a free sample:
Theorem: Let

G R S i
H(O_\@<C2—|—C—1> e — 1

5
Then for z € C\ |0,py], with p, = (\/52_1) ;

) |
|09 =) (1+0 () )

Recall that (7 is the holomorphic branch of ((z) defined by

=10 .
27— S withe@lloc B=HIF
(e i
Also notice that |e™**)| = exp (—VA1 (z)), as promised.




One more slide



THANK YOU

the audience and the organizers!



