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Aim of the talk

For a convex body K ⊂ Rn (that is a convex, compact set with non-empty
interior) denote by

TK := Rn +
√
−1 intK ⊂ Cn

the tube domain over K .

For a domain Ω ⊂ Cn denote by

BΩ : Ω × Ω → C

the Bergman kernel of Ω.

Theorem 1 (M.– Rubinstein, 2024)

For a symmetric convex body K ⊂ R2 (that is, K = −K ),

BTK
(0, 0) ≥

(
π

4

)2 1

|K |2
.
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Bergman kernels

The Bergman kernel of a domain Ω ⊂ Cn

BΩ : Ω × Ω → C

is characterized by three properties:

▶ BΩ holomorphic in the first variable

▶ BΩ anti-holomorphic in the second variable

▶ BΩ enjoys the ‘reproducing’ property

⟨f ,BΩ(·,w)⟩L2(Ω) = f (w), for all L2 holom. f on Ω.

Notes:

▶ BΩ is real on the diagonal,

BΩ(z , z) = sup
f ∈L2(Ω)

holomorphic

|f (z)|2

∥f ∥2
L2

.



A conjecture of B locki

This resolves the two-dimensional case of the decade-old conjecture:

Conjecture (B locki 2014)

For a symmetric convex body K ⊂ Rn,

BTK
(0, 0) ≥

(
π

4

)n 1

|K |2
,

with equality obtained by the cube [−1, 1]n.

For reference:
π

4
≈ 0.785.



Previous progress

Theorem 2 (Nazarov 2012)

For a symmetric convex body K ⊂ Rn,

BTK
(0, 0) ≥

(
π2

16

)n
1

|K |2
.

Note that
π2

16
≈ 0.617.

Idea of proof.

Use Hörmander’s ∂-theorem to construct a holomorphic function over TK

with good enough bounds on its L2-norm.



Previous progress

Theorem 3 (Berndtsson 2022)

For a symmetric convex body K ⊂ Rn,

BTK
(0, 0) ≥ (0.623)n

1

|K |2
.

Idea of proof.

Twist the Bergman space to an ‘easier’ one. Get an easy estimate on the
twisted space via the constant function. Use the plurisubharmonicty of
Bergman kernels to obtain an estimate for the desired Bergman kernel.



A (not so) small detour in convex geometry

What motivated B locki’s conjecture?

The answer to this question goes back to about 85 years ago. For any
convex body we may define the polar (or dual) body via

K ◦ := {y ∈ Rn : ⟨x , y⟩ ≤ 1 for all x ∈ K},

essentially changing facets into vertices.

∆n,0

∆◦
n,0
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A (not so) small detour in convex geometry

Another way to define the polar body is as a sublevel set of the support
function

hK (y) := sup
x∈K

⟨x , y⟩, x ∈ K .

That is
K ◦ = {y ∈ Rn : hK (y) ≤ 1}.

Utilizing this characterization, by a simple application of the fundamental
theorem of calculus and Fubini’s theorem, we obtain the following useful
formula ∫

Rn

e−hK (y)dy = n!|K ◦|
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A (not so) small detour in convex geometry

In the 1930’s, Kurt Mahler studied lattices and their duals aiming to
extend Minkowski’s famous theorem in the geometry of numbers
concerning the existence of lattice points in convex bodies. As part of his
work, Mahler needed to find a bound on the product of volumes:

|K ||K ◦|.

For convenience, denote this product via

M(K ) := n!|K ||K ◦| = |K |
∫
Rn

e−hK (y)dy ,

called the Mahler volume of K (the constant n! serves the purpose of
tensoriality: M(K × L) = M(K )M(L)).
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A (not so) small detour in convex geometry

▶ An important property of Mahler volume is its GL(n,R) invariance.
This comes from how polarity transforms under GL(n,R)
transformations:

(AK )◦ = (A−1)TK ◦, A ∈ GL(n,R).

Therefore,
M(AK ) = n!|AK ||(A−1)TK ◦|

= n!| det A||K || det A|−1|K ◦|
= n!|K ||K ◦|
= M(K ).

In contrast, M is not invariant under translations.

▶ Another important property is that polarity is an involution for convex
bodies that contain the origin in their interior:

(K ◦)◦ = K .
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A (not so) small detour in convex geometry

Using a precursor to John’s theorem, Mahler obtained crude bounds

M(K ) ≥ 4n

n!

and conjectured the following:

Conjecture (Mahler, 1938-39)

For a symmetric convex body K ⊂ Rn,

M(K ) ≥ M([−1, 1]n) = 4n.

On the same year (1939), but in a different paper, Mahler proved his
conjecture in dimension n = 2. The three-dimensional case was resolved
by Iriyeh–Shibata 80 years later! The conjecture remains open for n ≥ 4.



A (not so) small detour in convex geometry

Using a precursor to John’s theorem, Mahler obtained crude bounds

M(K ) ≥ 4n

n!

and conjectured the following:

Conjecture (Mahler, 1938-39)

For a symmetric convex body K ⊂ Rn,

M(K ) ≥ M([−1, 1]n) = 4n.

On the same year (1939), but in a different paper, Mahler proved his
conjecture in dimension n = 2. The three-dimensional case was resolved
by Iriyeh–Shibata 80 years later! The conjecture remains open for n ≥ 4.



Mahler’s 2D proof

The proof is via sliding of a vertex: Let S be a symmetric convex polytope.

▶ Fix a vertex q.

▶ Slide the vertex q and its antipodal −q in a manner parallel to their
adjacent vertices, so that the total volume remains the same.

q S(q)

(a) Before sliding

S(q′) q′

(b) After sliding



Mahler’s 2D proof

The proof is via sliding of a vertex: Let S be a symmetric convex polytope.

▶ Fix a vertex q.

▶ Slide the vertex q and its antipodal −q in a manner parallel to their
adjacent vertices, so that the total volume remains the same.

q S(q)

(a) Before sliding

S(q′) q′

(b) After sliding



Mahler’s 2D proof

▶ After rotation, by the GL(2,R) invariance of M, we may assume that
only the x-coordinate of q is affected by the sliding.

▶ Note that exactly 4 vertices move in the polar S(q)◦. By a direct
calculation

q 7→ 1

|S(q)◦|
can be shown to be a convex quadratic polynomial of the sliding
parameter.

▶ Note there are exactly two distinct positions q′ and q′′ for which S(q′)
and S(q′′) have exactly two vertices less than the initial position.

▶ By convexity,
|S(q)◦| ≥ min{|S(q′)|, |S(q′′)|},

hence the claim.
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Progress towards Mahler

Mahler’s conjecture has motivated a lot of work. Let us only mention two
important results:

Theorem 4 (Bourgain–Milman, 1987)

There exists a constant c > 0 such that for all n ∈ N and convex bodies
K ⊂ Rn,

M(K ) ≥ cn

.

The significance of this theorem is it obtains the correct behavior
‘asymptotically’.

Best bound so far:

Theorem 5 (Kuperberg 2008, Berndtsson 2021)

For a symmetric convex body K ⊂ Rn,

M(K ) ≥ πn

.



Progress towards Mahler

Mahler’s conjecture has motivated a lot of work. Let us only mention two
important results:

Theorem 4 (Bourgain–Milman, 1987)

There exists a constant c > 0 such that for all n ∈ N and convex bodies
K ⊂ Rn,

M(K ) ≥ cn

.

The significance of this theorem is it obtains the correct behavior
‘asymptotically’.
Best bound so far:

Theorem 5 (Kuperberg 2008, Berndtsson 2021)

For a symmetric convex body K ⊂ Rn,

M(K ) ≥ πn

.



Nazarov’s approach

A very interesting approach to the Bourgain–Milman inequality is due to
Nazarov who observed the following inequality between Mahler volume
and Bergman kernels of tube domains:

M(K ) ≥ πn|K |2BTK
(0, 0)

for convex bodies with their barycenter at the origin.

Corollary 6 (Nazarov 2012)

For a symmetric convex body K ⊂ Rn,

M(K ) ≥

(
π3

16

)n

.

Note π3/16 ≈ 1.937.



Nazarov’s proof

To obtain the lower bound on the Mahler volume via the Bergman kernel,
Nazarov capitalizes on an explicit formula for the Bergman kernel of tube
domains due to Rothaus (1960), Korányi (1962), and Hsin (2005):

BTK
(0, 0) = (2π)−n

∫
Rn

dy

JK (y)
, where JK (y) :=

∫
K

e−2⟨x ,y⟩dx . (1)

More generally,

BTK
(z ,w) = (2π)−n

∫
Rn

e
√
−1⟨z−w ,y⟩

JK (y)
dy

Claim JK (y) ≥ |K |ehK (−y)/2n when b(K ) :=
∫
K x dx

|K | = 0. Proof.
Jensen’s inequality + convexity.
(1) + Claim =⇒
M(K ) = |K |

∫
Rn e−hK (−y)dy ≥ |K |2

2n

∫
Rn

dy
JK (y)

= πn|K |2BTK
(0, 0).
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Our idea (2022, 2023)

Rewrite the Rothaus–Korányi–Hsin formula

BTK
(z ,w) = (2π)−n

∫
Rn

e
√
−1⟨z−w ,y⟩−log JK (y)dy .

Since M is related to BTK
(0, 0) by relating JK to hK , perhaps JK is some

sort of support function itself?

Definition (M.–Rubinstein, 2022)

The L1-support function

h1,K (y) := log

∫
K

e⟨x ,y⟩
dx

|K |
.
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Our idea (2022, 2023)

Now, since log JK (y) = h1,K (2y),

BTK
(z ,w) =

(2π)−n

|K |

∫
Rn

e
√
−1⟨z−w ,y⟩−h1,K (2y)dy ,

or, by a change of variables,

BTK
(z ,w) =

(4π)−n

|K |

∫
Rn

e
√
−1⟨ z−w

2
,y⟩−h1,K (y)dy .

When z = w = 0 (or, more generally, z = w) this becomes

BTK
(0, 0) =

(4π)−n

|K |

∫
Rn

e−h1,K (y)dy .
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Our idea (2022, 2023)

Definition (Berndtsson–M.–Rubinstein, 2023)

The L1-Mahler volume

M1(K ) := |K |
∫
Rn

e−h1,K (y)dy

Consequently,
|K |2BTK

(0, 0) = (4π)−nM1(K ).

So, Nazarov’s inequality, M(K ) ≥ πn|K |2BTK
(0, 0) becomes

M(K ) ≥ M1(K )

4n
.
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Back to the problem

With our definitions, B locki’s conjecture then becomes L1-version of the
Mahler conjecture:

Conjecture

For a symmetric convex body K ⊂ Rn, M1(K ) ≥ M1([−1, 1]n).

Question: Can we apply Mahler’s sliding argument to prove B locki’s
conjecture?

Not yet. Recall that Mahler’s proof involved a careful study of the polar
body under sliding.
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Geometric interpretation

Does
∫
Rn e−h1,K have a geometric meaning? To rephrase the question, we

know
∫
Rn e−hK (y)dy = n!|K ◦|, is there a similar interpretation of our

integral? Is it the volume of a canonical convex body?

Theorem-Definition (B.–M.–R., 2023)

M1(K ) = n!|K ||K ◦,1|

where K ◦,1 is convex, closed, with non-empty interior, and

K ◦,1 = {y ∈ Rn : ∥y∥K◦,1≤1},

where

∥y∥K◦,1 :=

(
1

(n − 1)!

∫ ∞

0
rn−1e−h1,K (ry)dr

)− 1
n

is a near-norm (norm if K = −K ). Moreover, K ◦,1 is compact if and only
if 0 ∈ intK , and if K is symmetric then so is K ◦,1.
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Convex geometric interpretation of Bergman kernel

Corollary

BTK
(0, 0) =

n!

(4π)n
|K ◦,1|
|K |

.



Lp-polarity

More generally, we can join M and M1, hK and h1,K via a 1-parameter
family of Mahler volumes, support functions:

Definition (B.–M.–R., 2023)

For p ∈ (0,∞),

▶

hp,K (y) := log

[∫
K

ep⟨x ,y⟩
dx

|K |

] 1
p

, y ∈ Rn

▶

Mp(K ) := |K |
∫
Rn

e−hp,K (y)dy
Thm
= n!|K ||K ◦,p|.

Note K 7→ K ◦,p is called “Lp-polarity”, however it is not a duality
operation.



Lp-Mahler conjecture

Conjecture (B.–M.–R., 2023)

For p ∈ (0,∞) and symmetric convex body K ⊂ Rn,

Mp(K ) ≥ Mp([−1, 1]n),

with equality if and only if K = A[−1, 1]n for some A ∈ GL(n,R).



Lp-polarity

Proof by picture that Lp-polarity is not duality: the Lp-polar body is always
smooth, so starting from a cube, the Lp-double polar cannot be the cube...

(a) (B2
∞)◦,p (b) (B2

1 )◦,p



Proof of the two-dimensional Lp-Mahler conjectures

B locki’s conjecture is obtained as the special p = 1 case in the following:

Theorem 7 (M.–R., 2024)

Let p ∈ (0,∞). For a symmetric convex body K ⊂ R2,

Mp(K ) ≥ Mp([−1, 1]2).

Proof.

▶ Start with a symmetric convex polytope S ⊂ R2 and fix a vertex q to
perform the sliding.

▶ As in the p = ∞ case, the claim can be reduced to proving that

q 7→ 1

|S(q)◦,p|

is a convex function of q.
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Proof of the two-dimensional Lp-Mahler conjectures

▶ We need a more convenient formula for the volume of the Lp-polar
body. By splitting the Lp-polar into two hemispheres and then using
polar coordinates:

|K ◦,p| =
1

2

∫
R

dt

∥(1, t)∥2K◦,p
+

1

2

∫
R

dt

∥(−1,−t)∥2K◦,p
.

|K◦,p ∩ {x > 0}| = 1
2

∫ dt
∥(1,t)∥2

K◦,p
|K◦,p ∩ {x < 0}| = 1

2

∫ dt
∥(−1,−t)∥2

K◦,p



Proof of the two-dimensional Lp-Mahler conjectures

▶ In particular, since S(q) is symmetric

|S(q)◦,p| =

∫
R

dt

∥(1, t)∥2S(q)◦,p
.

▶ By the Borell–Brascamp–Lieb inequality, the convexity of
q 7→ |S(q)◦,p|−1 is reduced to proving the convexity of

(t, q) 7→ ∥(1, t)∥S(q)◦,p .

▶ By a theorem of Ball we reduce this to showing a type of “strong
joint convexity” for the Lp-support functions of the 1-parameter
family of sliding polytopes

h
p,S

(
q+q′
2

)(r
(

1, t+t′

2

))
≤ s

τ+s hp,S(q)

(
τ(1, t)

)
+ τ

τ+s hp,S(q′)

(
s(1, t ′)

)
for all r , τ, s > 0 such that 1

r = 1
2

(
1
τ + 1

s

)
.
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Implications for Mahler’s conjecture

A resolution of B locki’s conjecture would not necessarily imply Mahler.
Indeed, Nazarov’s inequality would give

M(K ) ≥

(
π2

4

)n

which is ‘only’ π2/4 ≈ 2.467. This is because Nazarov’s approach is an
approach to the L1-Mahler conjecture.



Complex-convex approach to Mahler conjecture

The gap between L1 and L∞ should also be bridged:

Conjecture (M.–R.)

For a symmetric convex body,

M(K )

M1(K )
≥ M([−1, 1]n)

M1([−1, 1]n)
=

(
4

π2

)n

.



M/M1 under sliding

Consider the family of hexagons

H(t) := co{(1, 1), (t, 2), (−1, 1), (−1,−1), (−t,−2), (1,−1)}
that arise by the sliding of two antipodal vertices of H(0) so that the
volume is kept constant.

(a) t = −1 (b) t = 0

Figure: Hexagon under sliding of antipodal vertices



M/M1 under sliding

The following graph depicts M/M1 for a hexagon under sliding of two
antipodal vertices, reducing it to a square.



Non-symmetric analogues

The definitions of the Lp-support functions and Lp-polarity do not require
any symmetry and make sense for all convex bodies.
For example, for the simplices

∆n,0 := conv{−
n∑

i=1

ei , e1, . . . , en} and ∆n,+ := conv{0, e1, . . . , en}

-10 -5 0 5 10

-10

-5

0

5

10

Figure: (∆n,0)◦,p



Non-symmetric analogues

Nazarov’s inequality bounding the Mahler volume from below by the
Bergman kernel of the tube domain evaluated at the origin holds for all
convex bodies with barycenter at the origin. In addition,

Theorem 8 (M.–R., 2022)

For a convex body K ⊂ Rn,

|K |2BTK
(0, 0) ≥ 4−n.

Corollary 9 (M.–R., 2022)

For a convex body K ⊂ Rn,

M(K ) ≥
(
π

4

)n

.



Non-symmetric analogues

However, this is sub-optimal to what one gets from the
Kuperberg–Berndtsson bound with symmetrization:

Theorem 10 (Kuperberg 2008, Berndtsson 2021)

For a convex body K ⊂ Rn,

M(K ) ≥
(
π

2

)n

.

This is the best bound so far regarding the non-symmetric version of
Mahler’s conjecture:

Conjecture (Mahler)

For a convex body K ⊂ Rn,

M(K ) ≥ M(∆n,0) =
(n + 1)n+1

n!
= en+o(n).



Non-symmetric analogues

In a similar manner:

Conjecture (B.–M.–R. 2023)

Let p ∈ (0,∞). For a convex body K ⊂ Rn,

Mp(K ) ≥ inf
x∈Rn

Mp(∆n,0 − x) = Mp(∆n,0).



Proof in dimension two

Theorem 11 (M.–R. 2024)

Let p ∈ (0,∞). For K ⊂ R2,

Mp(K ) ≥ Mp(∆2,0).

Proof.

▶ Start with a convex polytope P ⊂ R2 and fix a vertex q to perform
the sliding.

▶ As in the symmetric case, the claim can be reduced to proving that

q 7→ 1

|P(q)◦,p|

is a convex function of q.
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Proof in dimension two

▶ Recall
|P(q)◦,p| = I+(q) + I−(q)

where

I+(q) = |P(q)◦,p ∩ {x > 0}| =
1

2

∫
R

dt

∥(1, t)∥2P(q)◦,p

and

I−(q) = |P(q)◦,p ∩ {x < 0}| =
1

2

∫
R

dt

∥(−1,−t)∥2P(q)◦,p
.

▶ By the previous (using the Borell–Brascamp–Lieb and Ball
inequalities),

q 7→ 1

I+(q)
and q 7→ 1

I−(q)

are convex.
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Proof in dimension two

▶ Problem This does not mean that

q 7→ 1

|P(q)◦,p|
=

1

I+(q) + I−(q)

is convex. Except! if, in addition, the ratio

q 7→ I+(q)

I−(q)

remains constant throughout this motion.



Proof in dimension two

▶ To achieve a constant ratio throughout the sliding, we introduce a
translating motion, independent of the sliding. Consider

(q, x) 7→ P(q) − (x , 0).

Essentially by the Intermediate value theorem, there is

x = x(p)

that keeps the ratio

|(P(q) − (x(p), 0))◦,p ∩ {x > 0}|
|(P(q) − (x(p), 0))◦,p ∩ {x < 0}|

constant throughout the sliding.
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