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Energy
Given lower semi-continuous functions W : Rd → (−∞,∞] and
V : Rd → (−∞,∞], the (continuous) energy of a Borel probability
measure µ ∈ P(Rd) is

IW,V(µ) =

∫
Rd

∫
Rd

(
W(x− y) + V(x) + V(y)

)
dµ(x)dµ(y).

Generally assume W depends on ‖x− y‖ and is repulsive (decreasing)
near 0.
What measure(s) minimize IW,V? Is it unique?
Sufficient growth (attraction) conditions on W or V as ‖x‖ → ∞, or
restriction of the problem to a compact space A (i.e. V(x) =∞ for
x 6∈ A), usually guarantees the existence of (compactly supported)
minimizers.
What can we say about the dimension of the support of a minimizer?
General trend: Stronger (local) repulsion⇒ higher dimension, stronger
attraction⇒ lower dimension

Ryan W. Matzke Riesz Energy with an External Field: Dimensionality of Minimizers



Energy
Given lower semi-continuous functions W : Rd → (−∞,∞] and
V : Rd → (−∞,∞], the (continuous) energy of a Borel probability
measure µ ∈ P(Rd) is

IW,V(µ) =

∫
Rd

∫
Rd

(
W(x− y) + V(x) + V(y)

)
dµ(x)dµ(y).

Generally assume W depends on ‖x− y‖ and is repulsive (decreasing)
near 0.

What measure(s) minimize IW,V? Is it unique?
Sufficient growth (attraction) conditions on W or V as ‖x‖ → ∞, or
restriction of the problem to a compact space A (i.e. V(x) =∞ for
x 6∈ A), usually guarantees the existence of (compactly supported)
minimizers.
What can we say about the dimension of the support of a minimizer?
General trend: Stronger (local) repulsion⇒ higher dimension, stronger
attraction⇒ lower dimension

Ryan W. Matzke Riesz Energy with an External Field: Dimensionality of Minimizers



Energy
Given lower semi-continuous functions W : Rd → (−∞,∞] and
V : Rd → (−∞,∞], the (continuous) energy of a Borel probability
measure µ ∈ P(Rd) is

IW,V(µ) =

∫
Rd

∫
Rd

(
W(x− y) + V(x) + V(y)

)
dµ(x)dµ(y).

Generally assume W depends on ‖x− y‖ and is repulsive (decreasing)
near 0.
What measure(s) minimize IW,V? Is it unique?

Sufficient growth (attraction) conditions on W or V as ‖x‖ → ∞, or
restriction of the problem to a compact space A (i.e. V(x) =∞ for
x 6∈ A), usually guarantees the existence of (compactly supported)
minimizers.
What can we say about the dimension of the support of a minimizer?
General trend: Stronger (local) repulsion⇒ higher dimension, stronger
attraction⇒ lower dimension

Ryan W. Matzke Riesz Energy with an External Field: Dimensionality of Minimizers



Energy
Given lower semi-continuous functions W : Rd → (−∞,∞] and
V : Rd → (−∞,∞], the (continuous) energy of a Borel probability
measure µ ∈ P(Rd) is

IW,V(µ) =

∫
Rd

∫
Rd

(
W(x− y) + V(x) + V(y)

)
dµ(x)dµ(y).

Generally assume W depends on ‖x− y‖ and is repulsive (decreasing)
near 0.
What measure(s) minimize IW,V? Is it unique?
Sufficient growth (attraction) conditions on W or V as ‖x‖ → ∞, or
restriction of the problem to a compact space A (i.e. V(x) =∞ for
x 6∈ A), usually guarantees the existence of (compactly supported)
minimizers.

What can we say about the dimension of the support of a minimizer?
General trend: Stronger (local) repulsion⇒ higher dimension, stronger
attraction⇒ lower dimension

Ryan W. Matzke Riesz Energy with an External Field: Dimensionality of Minimizers



Energy
Given lower semi-continuous functions W : Rd → (−∞,∞] and
V : Rd → (−∞,∞], the (continuous) energy of a Borel probability
measure µ ∈ P(Rd) is

IW,V(µ) =

∫
Rd

∫
Rd

(
W(x− y) + V(x) + V(y)

)
dµ(x)dµ(y).

Generally assume W depends on ‖x− y‖ and is repulsive (decreasing)
near 0.
What measure(s) minimize IW,V? Is it unique?
Sufficient growth (attraction) conditions on W or V as ‖x‖ → ∞, or
restriction of the problem to a compact space A (i.e. V(x) =∞ for
x 6∈ A), usually guarantees the existence of (compactly supported)
minimizers.
What can we say about the dimension of the support of a minimizer?
General trend: Stronger (local) repulsion⇒ higher dimension, stronger
attraction⇒ lower dimension

Ryan W. Matzke Riesz Energy with an External Field: Dimensionality of Minimizers



Modeling Natural Systems
The evolution of a system can be described by the aggregation equation

∂µt(x)

∂t
= ∇ · µt(x)∇

((∫
Rd

W(x− y)dµt(y)
)

+ V(x)

)
with interaction kernel W and external field V . Then (local) minimizers of
IW,V are steady states of the gradient flow.

For swarm behavior, neutral particles, or cell interactions, one may use
repulsive-attractive kernels, like Lennard-Jones/power law potentials

Ws,α(x− y) =
‖x− y‖−s

s
+
‖x− y‖α

α
.
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Existence and Compactness of Minimizers

Lennard-Jones/power law potentials

Ws,α(x− y) =
‖x− y‖−s

s
+
‖x− y‖α

α
, −∞ < s < d, −s < α <∞,

with conventions ‖x−y‖−0

0 = − log(‖x− y‖).
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Theorem (Cañizo, Carrillo, Patacchini ’15)
If s < d and α > −s, then there exists a minimizer of IWs,α . Moreover, there
exists some K ∈ (0,∞), such that if µeq is a minimizer, then
diam(supp(µeq)) ≤ K.

Ryan W. Matzke Riesz Energy with an External Field: Dimensionality of Minimizers



Repulsion Affecting Dimension
Lennard-Jones/power law potentials

Ws,α(x− y) =
‖x− y‖−s

s
+
‖x− y‖α

α
, s ∈ (−∞, d), α ∈ (−s,∞].

Theorem (Carrillo, Figalli, Patachini ’17)

If s < −2, −s < α <∞, and µeq is a minimizer of IWs,α,0, then supp(µeq) is
finite.

Theorem (Balague, Carrillo, Laurent, Raoul ’13)
If −2 < s < d − 2, −s < α <∞, and µeq is a minimizer of IWs,α,0, then
dim(supp(µeq)) ≥ s + 2.

Theorem (Carrillo, Delgadino, Mellet ’16)
If d − 2 ≤ s < d, 0 < α <∞, and µeq is a minimizer of IWs,α,0, then µ is
absolutely continuous with respect to the Lebesgue measure, i.e.
dim(supp(µeq)) = d.
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Attraction Affecting Dimension

Theorem (Davies, Lim, McCann, ’22, ’23)
For d ≥ 2 and s = −2,

if 2 < α < 4, then µeq is the uniform measure on some sphere, i.e.
dim(supp(µeq)) = d − 1.

If 4 < α, µeq is the uniform measure on the vertices of a regular
simplex, i.e. dim(supp(µeq)) = 0.

if α = 4, dim(supp(µeq)) ∈ [0, d − 1].

Theorem (Carrillo, Shu, ’23; Frank, M. ’24)

For d ≥ 2 and d − 4 < s < d2−3d−2
d+1 < d − 3

if α = 2, then µeq is absolutely continuous and supported on a ball, i.e.
dim(supp(µeq)) = d.

if α = 4, then µeq is the uniform measure on some sphere, i.e.
dim(supp(µeq)) = d − 1
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Riesz s-energies

Riesz s-kernels
For s ∈ R, we define the Riesz s-kernel as

Ws(x− y) =

{
1
s ‖x− y‖−s s 6= 0
− log(‖x− y‖) s = 0

.

Generally interested in minimizing

IWs,V(µ) =

∫
Rd

∫
Rd

(1
s
‖x− y‖−s + V(x) + V(y)

)
dµ(x)dµ(y).

Particularly interested in minimizing, for −2 < s < d,
max{0,−s} ≤ α <∞, and γ > 0

IWs,Vα,γ (µ) =

∫
Rd

∫
Rd

(1
s
‖x− y‖−s + γ

‖x‖α

α
+ γ
‖y‖α

α

)
dµ(x)dµ(y).
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Some Connections

Theorem (McCarthy ’23)

Let Xn = (X(1,n),X(2,n), ...,X(d,n)) be a d-tuple of n× n commuting,
Hermitian complex random matrices. Then, as n→∞, the distribution of
eigenvalues of 1√

n Xn will tend to the minimizing measure of IW0,V2,2 .

Theorem (Hertrich, Gräf, Beinert, Steidl ’24; CMSVW)
The minimizer of IWs,Vα,γ is also the minimizer of∫

Rd

∫
Rd

Ws(x− y)dµ(x)dµ(y) +
γ

α
Dα
α(δ0, µ)

where Dα is the Wasserstein α-metric.

The minimizer is how charge distributes from being concentrated at the
origin under a Wasserstein steepest descent flow after a certain amount of
time.
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Our Main Potential Theoretic Tools

Conditional Strict Positive Definiteness

For compact A ⊂ Rd, we call a symmetric, lower semi-continuous kernel
K : A× A→ (−∞,∞] conditionally strictly positive definite if for all
finite signed Borel measures µ such that µ(A) = 0 and µ 6≡ 0,

IK(µ) :=

∫
A

∫
A

K(x, y)dµ(x)dµ(y) > 0.

Lemma
For −2 < s < d, the kernel

Ks,V(x, y) = Ws(x− y) + V(x) + V(y)

is conditionally strictly positive definite on every compact A ⊂ Rd (we call
this being conditionally strictly positive definite on Rd).
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Our Main Potential Theoretic Tools

Theorem

Suppose K is conditionally strictly positive definite on Rd and a minimizer of
IK exists. Then µeq minimizes IK if and only if there is some constant C, such
that

Uµeq
K (x) :=

∫
Rd

K(x, y)dµeq(y)

{
= C x ∈ supp(µ)

≥ C x ∈ Rd . (1)

Moreover, the µeq uniquely minimizes IK .

Corollary
If −2 < s < d, and a minimizer µeq of IWs,V exists, then it is unique and the
only measure in P(Rd) to satisfy (1).
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Simplifying with Radial Symmetry
If −2 < s < d, V is radially symmetric, i.e. V(x) = f (‖x‖2), then µeq is
radially symmetric, as for any g ∈ O(d),

IWs,V(g#µeq) =

∫
Rd

∫
Rd

(1
s
‖gx− gy‖−s + f (‖gx‖2) + f (‖gy‖2)

)
dµeq(x)dµeq(y)

=

∫
Rd

∫
Rd

(1
s
‖x− y‖−s + f (‖x‖2) + f (‖y‖2)

)
dµeq(x)dµeq(y)

Theorem (Saff, Totik ’97; Boradochov, Hardin, Saff ’19; Dragnev, Orive,
Saff, Wielonsky ’23)

Let f (∞) := lim
r→∞

f (r2). There exists a unique compactly supported
minimizer of IWs,V if

0 < s < d and lim
r→∞

srs
(
f (r2)− f (∞)

)
< −1,

s = 0 and lim
r→∞

(
f (r2)− log(r)

)
=∞,

−2 < s < 0 and lim sup
r→∞

srsf (r2) < −2−s.
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A One-dimensional Problem
When V and µeq are radial, we can separate the radial and angular parts of
the measure, so

gs,V(‖x‖) := Uµeq
Ws,V(x) = f (‖x‖2) +

∫ ∞
0

∫
Sd−1

1
s
‖x− Ry‖−sdσ(y)dν(R).

For R > 0,

∫
Sd−1

1
s
‖x− Ry‖−sdσ(y) =


1
s R−s

2F1

(
s
2 ,

2+s−d
2

d
2

∣∣∣∣∣ ‖x‖2

R2

)
, ‖x‖ ≤ R

1
s ‖x‖

−s
2F1

(
s
2 ,

2+s−d
2

d
2

∣∣∣∣∣ R2

‖x‖2

)
‖x‖ ≥ R

.

(Get a slightly different function for the log case)

Frostman conditions:

gs,V(τ) +

∫
Rd

V(y)dµeq(y)

{
= Is,V(µeq) τ ∈ supp(ν)

≥ Is,V(µeq) τ ∈ [0,∞)
.
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Sphere as Minimizer
For −2 < s < d − 1 and some R = Rs,V > 0, and setting t = ‖x‖2

R2 , we find
that σR satisfying the Frostman conditions is equivalent to

hs,V(t) := UσR
Ws,V(x) =


R−s

s 2F1

(
s
2 ,

2+s−d
2

d
2

∣∣∣∣∣ t
)

+ f (R2t) t ∈ [0, 1]

R−s

s t−s/2
2F1

(
s
2 ,

2+s−d
2

d
2

∣∣∣∣∣ 1
t

)
+ f (R2t) t ∈ [1,∞)

having its minimum at 1.

The radius Rs,V is a solution to

Rs+2f ′(R2) = 2F1

(
s
2 ,

2+s−d
2

d
2

∣∣∣∣∣ 1
)
.
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Sphere as a Minimizer

Theorem (Chafaï, M., Saff, Vu, Womersley)
Let −2 < s < d − 3, γ > 0 and

α ≥ αs,d := max


s 2F1

(
s
2 ,

2+s−d
2

d
2

∣∣∣∣∣ 1
)

2− 2 2F1

(
s
2 ,

2+s−d
2

d
2

∣∣∣∣∣ 1
) , 2− (s + 2)(d − s− 4)

2(d − s− 3)

.

Then, with R =

(
Γ( d

2 )Γ(d−s−1)

2γΓ( d−s
2 )Γ(d−1− s

2 )

) 1
α+s

, σR uniquely minimizes

IWs,Vα,γ (µ) =

∫
Rd

∫
Rd

(1
s
‖x− y‖−s + γ

‖x‖α

α
+ γ
‖y‖α

α

)
dµeq(x)dµeq(y).

The bound on α is sharp. We expect for −s < α < αs,d,
dim(supp(µeq)) = d.

Ryan W. Matzke Riesz Energy with an External Field: Dimensionality of Minimizers



Sphere as a Minimizer

Theorem (Chafaï, M., Saff, Vu, Womersley)
Let −2 < s < d − 3, γ > 0 and

α ≥ αs,d := max


s 2F1

(
s
2 ,

2+s−d
2

d
2

∣∣∣∣∣ 1
)

2− 2 2F1

(
s
2 ,

2+s−d
2

d
2

∣∣∣∣∣ 1
) , 2− (s + 2)(d − s− 4)

2(d − s− 3)

.

Then, with R =

(
Γ( d

2 )Γ(d−s−1)

2γΓ( d−s
2 )Γ(d−1− s

2 )

) 1
α+s

, σR uniquely minimizes

IWs,Vα,γ (µ) =

∫
Rd

∫
Rd

(1
s
‖x− y‖−s + γ

‖x‖α

α
+ γ
‖y‖α

α

)
dµeq(x)dµeq(y).

The bound on α is sharp. We expect for −s < α < αs,d,
dim(supp(µeq)) = d.

Ryan W. Matzke Riesz Energy with an External Field: Dimensionality of Minimizers



Sphere as a Minimizer

αs,d = max{α∗
s,d, α

∗∗
s,d}

with

α∗
s,d :=

s · 2F1
( s

2 ,
2+s−d

2 ; d
2 ; 1
)

2− 2 · 2F1
( s

2 ,
2+s−d

2 ; d
2 ; 1
)

and

α∗∗
s,d := 2− (s + 2)(d − s− 4)

2(d − s− 3)
,

σR is never a minimizer for s ≥ d − 3. If d − 4 < s < d − 3 and α < αs,d,
hs,Vα,γ (t) is not convex at 1, so σR is not a minimizer, and we expect a
minimizer supported on an annulus.
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Mixed Support

For −2 < s ≤ d − 4 and α < αs,d, UσR
Ws,V achieves its minimum at 0, so σR

is not µeq. The minimizer seems more likely to be a combination of an
absolutely continuous measure on a ball and singular measures on spheres
on or outside the boundary.

hs,V(t) for α = α∗s,d
Numerics for α = 1.1, d = 6,

s = d − 6 = 0.
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Known Minimizers

Theorem (Chafaï, M., Saff, Vu, Womersley)

If d − 3 ≤ s < d, and f is C2 (in the extended sense) on [0,∞), with f ′′ finite
on (0,∞), and such that µeq exists. Then supp(µeq) is the union of
uncountably many spheres.

Mhaskar, Saff ’92; Caffarelli,
Vázquez ’01; López-García
’10; Bilogliadov ’18; Chafaï,
Saff, Womersley ’22,’23;
Carrillo, Shu ’23; Hertrich,
Gräf, Beinert, Steidl ’24;
Chafaï, M., Saff, Vu,
Womersley.
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Density of Measure from External Field
For 0 < s < d, the Riesz Potential operator

(−∆)−
d−s

2 V(x) := Cd,s

∫
Rd

V(y)

‖x− y‖s dy

acts as the inverse of the fractional Laplacian (−∆)
d−s

2 .

∆V(x) =

d∑
k=1

∂2

∂x2
k

V(x), (−∆)
d−s

2 V(x) = F−1
(
‖ξ‖d−sF

(
V
)
(ξ)
)

(x).

Proposition (Kwaśnicki ’15; Chafaï, Saff, Womersley ’22)

For 0 < s < d, suppose that µeq minimizes IWs,V . Then on supp(µeq)◦,
dµeq(x) = −(−∆)

d−s
2 V(x)dx.

Corollary

If 0 < s < d and (−∆)
d−s

2 V(x) > 0, then x 6∈ supp(µeq)◦. If
(−∆)

d−s
2 V(x) > 0 everywhere, then supp(µeq)◦ = ∅.
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Harmonic Case: s = d − 2

Corollary

For 0 < s = d − 2, on supp(µ)◦, dµeq(x) = ∆V(x)dx.

Theorem (Mhaskar, Saff ’92; López-García ’10)

Suppose 0 ≤ s = d − 2, V(x) = g(‖x‖), g′ is absolutely continuous and
nonnegative on (0,∞), and rd−1g′(r) is increasing with lim

r→∞
rd−1g′(r) > 1.

If R is the solution of Rd−1g′(R) = 1, then IWd−2,V is minimized by

dµeq(x) =
(
rd−1g′(r)

)′
1[0,R](r)drdσ(θ).

Corollary

If 0 ≤ s = d − 2, α > 0, γ > 0, and R = γ−
1

d+α−2 then the minimizer of
IWd−2,Vα,γ is given by

dµeq(x) = γ(d+α−2)rd+a−3
1[0,R](r)drdσ(θ) = Cd,α,γ‖x‖α−2

1B(0,R)(x)dx.
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The Next “Nice” Case: s = d − 4

Corollary

For 0 < s = d − 4, on supp(µ)◦, dµeq(x) = −∆2V(x)dx.

Theorem (Chafaï, Saff, Womersley ’22)

If 0 ≤ s = d − 4, 0 < α < 2, γ > 0, and R =
(

2
γ(d+α−2)

) 1
d+α−4 then the

unique minimizer of

IWd−4,Vα,γ (µ) =

∫
Rd

∫
Rd

1
d − 4

‖x− y‖4−d + γ
‖x‖α

α
+ γ
‖y‖α

α
dµ(x)dµ(y)

is given by

dµeq(x) =
d + α− 4

d − 2
dσR(x)

+
γ(2− α)(d + α− 2)(d + α− 4)

2(d − 2)
rd+α−5

1[0,R](r)drdσ(θ).
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Quadratic External Field

Theorem (Various authors; Chafaï, M., Saff, Vu, Womersley)
For d ≥ 2, α = 2, and γ > 0,

if d − 4 < s < d, then

dµeq(x) = As,d,R(R2 − ‖x‖2)1− d−s
2 1B(0,R)(x)dx,

if −2 < s ≤ d − 4, then µeq = σR.

Theorem (Classical; Riesz, 1938; Björck, 1956)

Let VB(0,R) =

{
0 ‖x‖ ≤ R
∞ ‖x‖ > R

. If µeq is the minimizer of IWs,VB(0,R) , then

if d − 2 < s < d,

dµ(x) = Cd,s,R
(
R2 − ‖x‖2)− d−s

2 1B(0,R)(x)dx.

if −2 < s ≤ d − 2, µ = σR
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Riesz Energy on Compacta

For a compact set A ⊂ Rd, let VA(x) =

{
0s x ∈ A
∞ x 6∈ A

, so the energy integral

becomes
IWs,VA(µ) =

∫
A

∫
A

1
s
‖x− y‖−sdµ(x)dµ(y).

Theorem
Suppose there exists some µ ∈ P(A) with∫

A

∫
A

Ws(‖x− y‖)dµ(x)dµ(y) <∞.

Then dim(A) > s.
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Riesz Energy on Compacta

Theorem (Wallins,’52)

If d − 2 < s < d, A is convex, and A◦ 6= 0, then supp(µeq) = A.

Theorem
If −2 < s ≤ d − 2 and A is convex, then supp(µeq) ⊆ ∂A.

Theorem (Björck, 1956)

If s < −1, then supp(µeq) consists only of the extreme points of the convex
hull of A.

If s < −2, and µ is a minimizer of IWs,VA , then # supp(µ) ≤ d + 1 .

For the cube A = [0, 1]d, this means that for s < −1, µeq has finite support.
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Riesz Energy on the Ball
Consider IWs,VA(µ) =

∫
A

∫
A

1
s ‖x− y‖−sdµ(x)dµ(y) for A = B(0,R).

Theorem (Riesz, 1938; Björck, 1956)
If µ is a minimizer of IWs,VB(0,R) , then

if d − 2 < s < d,

dµ(x) = Cd,s,R
(
R2 − ‖x‖2)− d−s

2 1B(0,R)(x)dx.

if −2 < s ≤ d − 2, µ = σR

if s = −2, µ is supported on RSd−1 and has center of mass at the origin

If s < −2, µ = 1
2(δp + δ−p) for some p ∈ RSd−1.

Acts as the limiting case α→∞ of

IWs,Vα,γ (µ) =

∫
Rd

∫
Rd

(1
s
‖x− y‖−s + γ

‖x‖α

α
+ γ
‖y‖α

α

)
dµ(x)dµ(y).
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Some Open Problems

What are sufficient conditions for a general V that will guarantee a
compactly supported minimizer of IWs,V? Are there any necessary and
sufficient conditions?

What are the explicit minimizers for other combinations of s and α?
When is the support a ball with disjoint concentric spheres?
When is it an annulus?
When are there singular components, and when are there not?
What do we get for s ≤ −2?

Can we find similar bounds on the dimension of minimizers of IWs,V as
with repulsive attractive kernels?

d − 2 ≤ s < d: dim(supp(µeq)) = d
−2 < s < d − 2: dim(supp(µeq)) ≥ s + 2
s < −2: supp(µeq) is finite.

Can we improve on these bounds? Can we get upper bounds based on
strength of attraction?
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Some Open Problems

How might a lack of smoothness or continuity in V(x) affect the
dimension of a minimizer?

For electrons around a positive source at the origin, we would have
V(x) = −γ 1

‖x‖ . However, Potential Theoretic methods generally
require that Ws(x− y) + V(x) + V(y) be bounded from below on every
compact subset of Rd. How can we handle external fields with negative
singularities?

Idea: If V(x) = −∞ for all x ∈ A ⊂ Rd, let QA,r = ∪x∈AB(r, x). We
can use Potential Theoretic methods to find a minimizing measure µeq,r

of IWs,V on ΩA,r = Rd \ QA,r. By then taking r →∞, we should arrive
at the optimal measure µeq for IWs,V on Rd.
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Thank you!
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