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The Sine-Gordon Equation
Semiclassical limit for pure-impulse initial data.

Consider the following Cauchy problem for uε = uε(x, t):

ε2uεtt − ε2uεxx + sin(uε) = 0, x ∈ R, t > 0,

uε(x, 0) = F(x) = 0, εuεt (x, 0) = G(x).

Here ε > 0 is a small parameter, and G ∈ S (R) is independent of ε.
Setting t = εT, the equation looks like a perturbed simple pendulum:

uεTT + sin(uε) = ε2uεxx.

The unperturbed problem conserves the total energy

E = 1
2(uεT)2 + (1− cos(uε)).

Expectation: for T = O(1), the pendulum at x undergoes approximate
librational motion (|uε| < π) if E = E(x) < 2

rotational motion (uε grows without bound) if E = E(x) > 2.



The Sine-Gordon Equation
R. Buckingham and M., Mem. AMS 225, 1–152, 2013.

When t = 0, the energy is E = 1
2 G(x)2. One can prove rigorously that a

sufficiently strong impulse profile G produces both types of motion,
with modulations subject to Whitham’s theory, separated by critical
points x = xcrit where G(xcrit) = ±2.



The Sine-Gordon Equation
R. Buckingham and M., J. Anal. Math. 118, 397–492, 2012.

Consider the behavior of uε near a critical point x = xcrit:

Let ν := [12G′(xcrit)]
−1 > 0 and set ∆x := x− xcrit.



The Sine-Gordon Equation
R. Buckingham and M., J. Anal. Math. 118, 397–492, 2012.

Describing the asymptotics near the critical point x = xcrit and t = 0
requires introducing a certain family of rational functions.

Set U0(y) := 1 and V0(y) := −y/6. Generate {Um,Vm}m∈Z by the
forward recursion

Um+1(y) := −1
6

yUm(y)− U
′
m(y)2

Um(y)
+

1
2
U ′′m(y) and Vm+1(y) :=

1
Um(y)

and the backward recursion

Um−1(y) :=
1
Vm(y)

and Vm−1(y) :=
1
2
V ′′m(y)− V

′
m(y)2

Vm(y)
− 1

6
yVm(y).
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Theorem (Sine-Gordon Behavior Near Pendulum Separatrix)

Fix an integer m and assume that (x, t) lies in the horizontal strip Sm in
the (x, t)-plane given by the inequality∣∣∣∣t − 2

3
mε log(ε−1)

∣∣∣∣ ≤ 1
3
ε log(ε−1).

Suppose also that ∆x = O(ε2/3). Then as ε→ 0,

cos(1
2 uε(x, t)) = (−1)msgn(Um(y)) sech(T) + o(1)

sin(1
2 uε(x, t)) = (−1)m+1 tanh(T) + o(1), where

T :=
t
ε
− 2m log

(
4ν1/3

ε1/3

)
+ log |Um(y)|, and y :=

∆x
2ν1/3ε2/3 .



The Sine-Gordon Equation
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The leading terms determine a limiting X-independent exact solution u
of the unscaled equation

uTT − uXX + sin(u) = 0.

This exact solution represents a superluminal (infinite velocity) kink
with unit magnitude topological charge σ := sgn(Um(y)).

cos(u(T)) sin(u(T))



The Sine-Gordon Equation
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But T includes weak dependence on the spatial variable y, and hence
each kink is slowly modulated in the direction parallel to the wavefront.
The center (T = 0) is a vertical translate of the graph of − log |Um(y)|:

The strips S0, . . . , S6 in the (y, t)-plane for ε = 10−5 and 4ν1/3 = 1, and
the curve T = 0 in each strip.

Since t = O(1) means m→∞, knowledge of the large-m behavior of
the rational functions Um(y) will be useful to determine how the kink
pattern matches onto larger time dynamics.



Rational Painlevé-II Functions
It may seem miraculous given what has been explained so far, but. . .

It turns out that (U ,V) = (Um,Vm) satisfy for each m the coupled
system of second-order Painlevé II-type equations

U ′′(y)+2U(y)2V(y)+
1
3

yU(y) = 0 and V ′′(y)+2U(y)V(y)2+
1
3

yV(y) = 0.

Moreover, the logarithmic derivative

P(y) = Pm(y) :=
U ′m(y)

Um(y)

is a rational solution of the inhomogeneous Painlevé-II equation (PIIα)

P ′′(y) = 2P(y)3 +
2
3

yP(y) +
2
3
α, α ∈ C

in the special case that α = −m ∈ Z.



Rational Painlevé-II Functions
History and applications.

The functions Pm were
discovered as solutions of PII−m by Yablonskii (1959) and Vorob’ev
(1965), and
studied via Bäcklund transformations by Airault (1979).

Airault showed that the condition α ∈ Z is necessary for PIIα to have a
rational solution, and Murata (1985) has shown that Pm is the unique
rational solution of PII−m.

In addition to sine-Gordon, the rational Painlevé-II functions arise in
the theory of steady electrolysis (Bass 1964 and Rogers, Bassom,
& Schief 1999),
string theory (Johnson 2006), and
the theory of plane equilibrium fluid vortex configurations
(Clarkson 2009).



Rational Painlevé-II Functions
Connection with semiclassical sine-Gordon. Parametrix Riemann-Hilbert problem.

The IST for sG near criticality boils down to this problem for Zm(ζ; y):

lim
ζ→∞

Zm(ζ; y)(−ζ)(1−2m)σ3/2 = I



Rational Painlevé-II Functions
Connection with semiclassical sine-Gordon. Parametrix Riemann-Hilbert problem.

The quantities of interest in sine-Gordon theory are obtained from
Zm(ζ; y) by expansion for large ζ:

Um(y) = Am,12(y) and Pm(y) = Am,22(y)− Bm,12(y)

Am,12(y)

where the matrices Am(y) and Bm(y) are obtained from the expansion:

Zm(ζ; y)(−ζ)(1−2m)σ3/2 = I + Am(y)ζ−1 + Bm(y)ζ−2 +O(ζ−3), ζ →∞.

One can prove directly from the conditions governing Zm(ζ; y) that Um

and Pm are rational functions satisfying the desired recursion and
differential equations. (This explains the aforementioned miracles.)

Now turn the problem around: consider using Deift-Zhou steepest
descent analysis of Zm(ζ; y) in the limit of large m to deduce
large-degree asymptotics of Um and Pm.



Um and Pm for Large m: Noncritical Analysis
R. Buckingham and M., Nonlinearity 27, 2489–2578, 2014.

The simplest result to state involves an analytic function S = S(x)
defined as follows: S(x) is the unique solution of the cubic equation
3S3 + 4xS + 8 = 0 that is analytic for x ∈ C \ ΣS where ΣS is the contour

x

�
�
�
�
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A
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AA

r( 81
4

)1/3
eiπ/3

r( 81
4

)1/3
e−iπ/3

r0r−
(81

4

)1/3

Note that S(x) = −2x−1 +O(x−4) as x→∞ and S(x) is real for x ∈ R.



Um and Pm for Large m: Noncritical Analysis
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Theorem (Exterior Asymptotics)
There exists a piecewise-analytic simple closed curve ∂T such that
uniformly for x = y/(m− 1

2)2/3 bounded outside ∂T (and also for x as
close as log(m)/m from an edge — but not a corner), as m→ +∞,

m−2m/3e−mλ(x)Um = U̇(x) +O(m−1), U̇(x) := exS(x)/6,

m−1/3Pm = Ṗ(x) +O(m−1), Ṗ(x) := −1
2

S(x),

where the normalizing exponent for U is λ(x) := 1
4 S(x)3 − log(3S(x)).
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-3 -2 -1 0 1 2

-2

-1

0

1

2
Poles and zeros of Um(y) in the x-plane for
m = 20 and the curve ∂T. The opening
angle of ∂T at each corner is exactly 2π/5.
∂T is (part of) the zero locus of a harmonic
function explicit in S.



Um and Pm for Large m: Noncritical Analysis
R. Buckingham and M., Nonlinearity 27, 2489–2578, 2014.

Boutroux ansatz method: Let x0 be a fixed complex number and set

y = (m− 1
2)2/3(x0 + (m− 1

2)−1w).

Writing Pm(y) = (m− 1
2)1/3q(w) converts the exact equation

P ′′m(y) = 2Pm(y)3 +
2
3

yPm(y)− 2
3

m

into the form

q′′(w) = 2q(w)3 +
2
3

x0q(w)− 2
3

+(m− 1
2)−1

[
2
3

wq(w)− 1
3

]
.

Neglecting the formally small red terms =⇒ q(w) is an elliptic function
with modulus depending on x0.
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The formal Boutroux approximation is valid as long as x0 lies within the
interior of T, the “elliptic region”.

Theorem (Interior Asymptotics)
There exists a smooth but non-analytic function Λ : T → C such that
with y = (m− 1

2)2/3x and x = x0 + (m− 1
2)−1w, as m→ +∞,

m−2m/3e−mΛ(x)Um =
U̇m(w; x0)

1 +O(m−1U̇m(w; x0))
,

m−1/3Pm =
Ṗm(w; x0)

1 +O(m−1Ṗm(w; x0))
,

both hold uniformly for x0 in compact subsets of T and w bounded,
where U̇m(w; x0) and Ṗm(w; x0) are explicitly constructed in terms of the
Riemann theta function of a uniquely determined elliptic curve Γ(x0).



Um and Pm for Large m: Noncritical Analysis
R. Buckingham and M., Nonlinearity 27, 2489–2578, 2014.

Some notes:
For each x0 ∈ T, Ṗm(w; x0) is an elliptic function of w that solves
the Boutroux ansatz differential equation.
Accuracy even near poles is obtained using Bäcklund
transformations.
Pole/zero locations accurate to O(m−2) in x; spacing scales as
m−1.
Interpretation of two-variable approximations:

x0 is a coordinate on the base manifold T. Setting w = 0 gives a
uniform approximation that is not meromorphic in x0 = x.
w is a coordinate on the tangent space to T at x0. Fixing x0 and
varying w gives a tangent approximation that is meromorphic in w
but only locally accurate.
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m = 2 m = 3
x
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m = 6 m = 9
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Plots of 2
π arctan(|U̇m(0; x)|) with zeros (◦) and poles (∗) of Um.
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From our approximate formulae:
We prove that the function m−1/3Pm((m− 1

2)2/3x) converges to a
continuous limit Ṗmacro(x) in the distributional topology of
D ′(C \ ∂T), as well as in the (suitably PV-regularized)
distributional topology of D ′(R \ {xc, xe}), where (xc, xe) = T ∩ R.

Re(Ṗmacro(x)) Im(Ṗmacro(x))

x

-4 -2 0 2 4

-4

-2

0

2

4

-0.4

-0.2

0

0.2

0.4

-6-4-20246

x

-4 -2 0 2 4

-4

-2

0

2

4

-0.4

-0.2

0

0.2

0.4

-6-4-20246

Note ∂Ṗmacro(x) 6= 0 for x ∈ T.



Um and Pm for Large m: Noncritical Analysis
R. Buckingham and M., Nonlinearity 27, 2489–2578, 2014.

From our approximate formulae:
We calculate the asymptotic planar density (at x ∈ T) and linear
density (at x ∈ T ∩ R) of poles of Um. Taking out a factor of m2,
these are:

Planar Density σP(x) Linear Density σL(x)

x
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x

σP(x) is inversely proportional to the real area of the Jacobian of
Γ(x). σL(x) is inversely proportional to the real period of the elliptic
function Ṗm as a function of w.
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xc -2 -1 0 1 xe
-2

-1

0

1

2

x

m=3

xc -2 -1 0 1 xe
-2

-1

0

1

2

x

m=9

Exact

Uniform Approx.

Tangent Approx.

Quantitative comparison for x ∈ T ∩ R of m−2m/3e−mΛ(x)Um((m− 1
2)2/3x),

the uniform approximation U̇m(0; x), and the tangent approximation
based at the origin U̇m((m− 1

2)x; 0).
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Um and Pm for Large m: Critical Analysis
R. Buckingham and M., Nonlinearity 28, 1539–1596, 2015.

What does “critical behavior” of the rational Painlevé-II functions
mean?

The preceding analysis of the rational Painlevé-II functions fails for
x ∈ ∂T, and it fails to be uniform for x sufficiently close to ∂T.
When x approaches ∂T at some rate while m→∞, new critical
phenomena occur, requiring the modification of the steepest
descent analysis of Zm(ζ; y) via the installation of specialized local
parametrices.

This is in complete analogy with how the rational Painlevé-II functions
arose from the IST Riemann-Hilbert problem for sine-Gordon in the
first place.

The critical behavior of Um and Pm is different depending on whether x
is close to a smooth point of an edge of ∂T, or whether x is close to a
corner point of ∂T.



Um and Pm for Large m: Critical Analysis
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While our work covers both edges and corners, we give here the result
for x near a corner point of ∂T. By a rotational symmetry, it is sufficient
to consider the negative real corner point x = xc = −(9/2)2/3.
Our results are formulated in terms of the famous (real) tritronquée
solution Y(t) of the Painlevé-I equation:

Y ′′(t) = 6Y(t)2 + t

that is uniquely specified by the asymptotic behavior

Y(t) = −
(
− t

6

)1/2
+O(t−2), t→∞, | arg(−t)| ≤ 4

5
π − δ, δ > 0.

Dubrovin, Grava, and Klein conjectured (2009), and Costin, Huang,
and Tanveer proved (2014), that Y(t) is analytic for | arg(−t)| < 4π/5
without the condition t→∞. Associated with Y is its Hamiltonian

H(t) :=
1
2

Y ′(t)2 − 2Y(t)3 − tY(t).
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Theorem (Corner Asymptotics)

Let K be a compact set in the t-plane containing no poles of Y(·). Then

(m
6

)−2m/3
e1/2−m/3em(x−xc)/61/3Um

(
(m− 1

2)2/3x
)

=

1 +
26/15

m1/5 H(t) +O
(

1
m2/5

)

m−1/3Pm

(
(m− 1

2)2/3x
)

= − 1
61/3 −

1
m2/5

27/15

31/3 Y(t) +O
(

1
m3/5

)
both hold in the limit m→ +∞, uniformly for t ∈ K, where

t :=
21/15

31/3 m4/5(x− xc).
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The function 2−6/15m1/5((m/6)−2m/3e1/2−m/3em(x−xc)/61/3Um − 1) (thick
gray curves) and the tritronquée Hamiltonian H (thin black curves) both
plotted as functions of t. (H was computed using the “pole field solver”
of Fornberg and Weideman (2011).)



Um and Pm for Large m: Critical Analysis
R. Buckingham and M., Nonlinearity 28, 1539–1596, 2015.

The function −2−7/1531/3m2/5(m−1/3Pm + 6−1/3) (thick gray curves) and
the tritronquée solution Y (thin black curves) both plotted as functions
of t. (Y was computed using the “pole field solver” of Fornberg and
Weideman (2011).)



Conclusion

In a semiclassical multi-scaling limit solutions to the sine-Gordon
equation with initial data crossing the pendulum separatrix exhibit
a universal structure near the crossing points. Superluminal kinks
are centered along the real graphs of the rational functions Um

associated with the Painlevé-II-α equation.
The rational Painlevé-II functions also show up in diverse physical
applications including electrolysis, string theory, and the
interaction of fluid vortices.
The common link between sine-Gordon and Painlevé-II is a
parametrix Riemann-Hilbert problem for Zm(ζ; y) that admits
detailed asymptotic analysis in the limit m→∞, yielding useful
and interesting asymptotic formulae for the rational Painlevé-II
functions.
Some of our noncritical results were obtained more recently in a
different way by Bertola and Bothner (arxiv:1401.1408).

Thank You!
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