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Nagata Conjecture in P2

The Nagata Conjecture is one of the most intriguing open problems in the
area of curves in the projective plane. It governs the minimal degree required
for a plane algebraic curve to pass through a collection of r general points in
P2 with prescribed multiplicities.

Suppose p1, . . . , pr are r general points in P2 and that m1, . . . ,mr are given
positive integers. Then for r > 9, any curve C in P2 that passes through each
of the points pi with multiplicity mi must satisfy deg C > 1√

r
.
∑r

i=1 mi.

One says that a property P holds for r general points in P2 if there is a non
empty Zariski-open subset W of (P2)r such that P holds for every ”set”
{p1, . . . , pr} of r points in W .



Masayoshi Nagata (1959) pointed out that it is enough to consider the
uniform case. Thus this conjecture is equivalent to the following one, which is
usually called:

Nagata Conjecture.

Suppose p1, . . . , pr are r general points in P2 and that m is a given positive
integer. Then for r > 9, any curve C in P2 that passes through each of the
points pi with multiplicity at least m must satisfy deg C >

√
r.m.



The only case when this is known to hold true is when r > 9 is a
perfect square (proved by M. Nagata 59).

He has also remarked that the condition r > 9 is necessary.

Fix r general points S = {p1, . . . , pr} in P2 and a nonnegative integer m.
Define Ω(S,m) to be the least integer d such that there is a curve of degree d
vanishing at each point pi with multiplicity at least m. For r ≤ 9, applying M.
Nagata’s methods, B. Harbourne (01) shows that Ω(S,m) = ⌈crm⌉, where

r 1 2 3 4 5 6 7 8 9

cr = inf
m≥1

Ω(S,m)

m
1 1 3

2 2 2 12
5

21
8

48
17 3



More recently, without any extra condition connecting the degree, the multi-
plicity m and the cardinality r,

G. Xu (94) proved that degC ≥
√
r−1
r ·

∑r
i=1 mi

and H. Tutaj-Gasinska (03) proved that degC ≥ 1√
r+(1/12)

·
∑r

i=1 mi

(see also B. Harbourne (01) and B. Harbourne and J. Roé (08)).

An affirmative answer to Nagata conjecture is very important because it has a
lot of applications in particular in number theory, in symplectic geometry
(symplectic packings in the unit ball) and in algebraic geometry.
A more modern formulation of this conjecture is often given in terms of
multiple-point Seshadri constants, introduced by J.-P. Demailly (92-01) in the
course of his work on Fujita’s conjecture.



Generalization of Nagata Conj. in any dimension n ≥ 2

Based on a conjecture of R. Fröberg, A. Iarrobino (97) predicted that

An hypersurface in Pn passing through r generic points with multiplicity m has
a degree > r1/n ·m, except for an explicit finite list of (r, n).

L. Evain (05) proved this conjecture when the number of points in
Pn is of the form sn (in this case the list is (4, 2), (9, 2) and (8, 3)).

Up to now, Nagata Conjecture remains open for every non-square r ≥ 10,
after more than sixty years of attention by many researchers.
There are over 200 references in Mathscinet, directly on this subject.



SHGH Conjecture in C2

Fix r general points S = {p1, . . . , pr} in C2 and nonnegative integers d and m.
We denote by

PS(d;m): the linear subspace of polynomials of degree ≤ d in C2, with
vanishing order at least m at any points pi, for 1 ≤ i ≤ r.

The expected dimension of PS(d;m) is eS(d;m) = max{0, vS(d;m)}

where vS(d;m) = (d+1)(d+2)
2 − rm(m+1)

2 is its virtual dimension.

The true dimension of the space PS(d;m) is denoted by dimS(d;m) and

dimS(d;m) ≥ eS(d;m).



B. Harbourne (86), A. Gimigliano (87) and A. Hirschowitz (89), independently
have given conjectures for explicitly computing dimS(d;m) for any r. Those
conjectures are in connection with an earlier conjecture posed by B. Segre
(62), and they are all equivalent to the following one, which states

SHGH Conjecture.

Suppose that S = {p1, . . . , pr} are r general points in C2 and that m is a given
positive integer. Then dimS(d;m) = eS(d;m)

This last conjecture is an interpolation problem. It is obvious in C, but
difficult if the number of variables is greater than or equal to 2.

SHGH Conjecture has been proved independently by C. Ciliberto
and R. Miranda (06) and L. Evain (07), when r is a perfect square.



Connection between these two Conjectures

SHGH conjecture =⇒ Nagata conjecture.

If the SHGH Conjecture is satisfied, the minimal degree of a curve through
r ≥ 10 points with vanishing order ≥ m, is always >

√
r.m

(because (d+1)(d+2)
2 ≥ rm(m+1)

2 + 1),

and when m goes to ∞ it is asymptotically equal to
√
r.m+ ⌊

√
r−3
2 ⌋.



Nagata and SHGH Conjectures in connection with
interpolation problem

Fix S = {p1, . . . , pr}, d ≥ 1 and m ≥ 1. Let denote by
* C2r

∗ := {z = (z1, . . . , zr) ∈ C2r : zj ̸= zk,∀j ̸= k},
* δ1(r,m) := rm(m+1)

2 , d1(r,m) = ⌊
√
r.m⌋,

* φS,d,m the evaluation map from Cd[z] to Cδ1(r,m)

P 7→ (P (γ)(s), for all |γ| ≤ m− 1 and for all pj ∈ S).

S is a ”Nagata point in C2r
∗ ” iff for any m ≥ 1, the map φS,d1(r,l),m is

injective (or equivalently, has maximal rank).

When r is a square ≥ 10, there exists ”Nagata points”.
More precisely there exists a psh function wr in the Lelong class in C2r (not
≡ −∞) such that

C2r
∗ \ w−1

r (−∞) ⊂ Nagr.



S is a ”SHGH point in C2r
∗ ” iff for any m ≥ 1 and any d ≥ 1, φS,d,m

has maximal rank:

∗ when (d+1)(d+2)
2 ≤ rm(m+1)

2 , φS,d,m is injective,

∗ when (d+1)(d+2)
2 ≥ rm(m+1)

2 , φS,d,m is surjective.

When r is a square ≥ 10, there exists SHGH points.
More precisely there exists a psh function w̃r in the Lelong class in C2r (not
≡ −∞) such that

C2r
∗ \ w̃−1

r (−∞) ⊂ SHGHr.



Transcendental versions of these conjectures in term of
pluripotential theory

Now we would like to develop transcendental techniques, to overcome the
intrinsic rigidity of polynomials and to obtain a new approach to this problem
of algebraic geometry. Instead of considering complex polynomials, we work
with plurisubharmonic functions, having logarithmic poles at prescribed
points. These last functions are much more flexible than the first ones.



Thus two points of view are possible. A local one and a global one.

Pluricomplex Green functions in a bounded domain in Cn with
logarithmic poles of weight 1 at prescribed points with zero value at the
boundary.

Q1.What happens when the poles collide to a single point in the domain ?
The nature of the logarithmic singularity of the limit function is in
connection with the algebraic properties of the set of fixed points and its
singular degree of M. Waldschmidt (77-87).

Entire psh functions in all Cn, with a logarithmic behavior at infinity.
In particular the subclass of psh functions which are maximal (for the
complex Monge-Ampère operator) outside prescribed points. They
inevitably have to satisfy certain conditions of growth at infinity.

Q2.Which minimal growth they can have at infinity ?
It will have also a link with the singular degree of M.Waldschmidt.



Recalls ”Pluricomplex Green function in bounded domain in Cn”

For a bounded domain D ⊂ Cn, the pluricomplex Green function in D with
logarithmic poles in a finite subset S of D

gD(S, z) = sup{u(z) : u psh on D, u ≤ 0,

u(z) ≤ ln ||z − p||+ O(1) for any point p in S}.

(J.-P. Demailly (85-87), M. Klimek (87), P. Lelong (87-89)).
If D is hyperconvex then this ft has an alternative description in terms of the
complex Monge-Ampère operator (E. Bedford- B.-A. Taylor (76-82), J.-P.
Demailly(87)). gD(S, .) is the unique solution to the following Dirichlet pb:

u is plurisubharmonic and negative on D, continuous on D̄ \ S,
(ddcu)n = 0 on D \ S,
u(z) = ln ||z − p||+ O(1) as z → p, ∀p ∈ S,
u(z) → 0 as z → ∂D.

In this case, (ddcu)n =
∑

p∈S δp.



Recalls ”Singular degree of a finite set of points”

It’s an affine invariant, introduced by M. Waldschmidt (87) (G.V. Chudnovsky
(81)), in connection with the Nagata Conjecture.

For any polynomial P ∈ C[z] = C[z1, . . . , zn],
degP its degree and ord(P, p) its vanishing order at any point p.
If m is a positive integer

Ω(S,m) = min{deg P : P ∈ C[z], ord(P, p) ≥ m,∀ p ∈ S}.

The limit exists and it is called the singular degree of S

Ω(S) := lim
m→+∞

Ω(S,m)/m = inf
m≥1

Ω(S,m)/m

(Ω(S,m1+m2) ≤ Ω(S,m1)+Ω(S,m2), and in particular Ω(S,m) ≤ Ω(S, 1)m).



For any m ≥ 1

Ω(S, 1)

n
≤ Ω(S) = inf

m

Ω(S,m)

m
≤ Ω(S,m)

m
≤ Ω(S, 1).

By using Hörmander-Bombieri-Skoda theorem, M. Waldschmidt (87) proved

∗ for any m1 and m2 ≥ 1:
Ω(S,m1)

m1 + n− 1
≤ Ω(S) ≤ Ω(S,m2)

m2
,

∗ an upper bound for Ω(S,m):

Ω(S,m) ≤ (m+ n− 1)|S|1/n − (n− 1).

=⇒ Ω(S) ≤ |S|1/n.

The problem is to find a lower bound for Ω(S). Nagata conjecture can be
stated in term of the invariants Ω(S,m):

In C2, if r > 9, then [Ω(S,m) > m
√
r, ∀m ≥ 1] holds for a set S of r points in

general position.



One application: a Schwarz’ Lemma (Moreau (80),
Waldschmidt (87))

For any ϵ > 0, there exists a real number r(S, ϵ) s.t.
for any r < ϱ < R/(2en) and
for any entire function f s.t. ord(f, pj) ≤ m for all pj ∈ S, we have

ln ||f ||ϱ − ln ||f ||R ≤ (Ω(S, l)− lϵ). ln

(
2enϱ

R

)

≤ l(Ω(S)− ϵ) ln

(
2enϱ

R

)
.



Local study

Goal. Study the convergence of multipole pluricomplex Green
functions in a bounded hyperconvex domain in Cn, in the case
where poles contract to one single point.

Reduce this pb to the case where the domain = B(O, 1) and the point where
the poles contract is the origin.
Let S ⊂ B(O, 1). |S| its cardinality.
gR(S, .) the pluricomplex Green function in ball B(O,R) with logarithmic
poles in S, of weight one.
gR(S, z) = g1(S/R, z/R) for any z ∈ B(O,R).
Thus its is natural to study g∞ a negative psh function defined in B(O, 1) by

g∞(z) = (lim sup
t∈C∗→0

g1(tS, z))
∗.

|S| · ln ||z|| ≤ g∞(z) ≤ gB(O,1)(O, z) = ln ||z||.

g∞ tends to 0 on the boundary of B(O, 1) and it has an unique logarithmic
singularity at the origin.



Q. What is the nature of the logarithmic singularity of this function
g∞ at O ? What is its Lelong number at O ?

If u is a psh function, then the classical Lelong number ν(u, z) of u at a point
z is (P. Lelong-69) the (2n− 2)-dimensional density of the measure ddcu at z :

ν(u, z) := lim
r→0

1

(πr2)n−1

∫
|w−z|<r

ddcu ∧ (ddc|w − z|2)n−1.

We can also compute this number as follows (Avanissian, K. Kiselman):

ν(u, z) = lim
y→−∞

sup|w|=1 u(z + wey)

y
= lim

y→−∞

1

y

∫
|w|=1

u(z + wey)dλ̃(w),

where dλ̃ is the normalized surface measure on the unit sphere.



Theorem (N-AIF 21)

Let S be a finite set of points in Cn. The psh function g∞ satisfy several
properties :

1 ν(g∞, O) = Ω(S) and (ddcg∞)n = 0 in B(O, 1) \ {O}.
Ω(S)n ≤ (ddcg∞)n({O}) =

∫
B(O,1)

(ddcg∞)n ≤ |S| and we have

g∞(z) ≤ Ω(S) ln ||z||, in B(O, 1).

2 If Ω(S) = |S|1/n then (ddcg∞)n({O}) = Ω(S)n = |S| and

g∞(z) = |S|1/n ln ||z||, in B(O, 1).

3 Conversely if g∞ is equal to Ω(S) ln ||.|| in B̄(O, 1), then Ω(S) = |S|1/n.

In the previous construction of g∞, we can replace the unit ball B(O, 1) by any
bounded hyperconvex domain D in Cn and the origin by any point zo in D.



2 examples with two or three poles

1 Let S = {(1/2, 0), (−1/2, 0)} in C2. Ω(S) = 1. For any t ∈ C∗ suff. small,

g1(tS, z) = max{ln
∣∣∣∣ (z1 − t/2)(z1 + t/2)

(1− t̄z1/2)(1 + t̄z1/2)

∣∣∣∣ , ln |z2|}, in P (O, 1)

(g1(tS, .))t∈C∗ cv. loc. unif. outside O to g∞(z) = max{2 ln |z1|, ln |z2|}.
(ddcg∞)2({O}) = 2 = |S| and ν(g∞, O) = 1 <

√
2.

2 Let S = {(0, 0), (1, 0), (0, 1)} in C2. Ω(S) = 3/2. Around the origin

g1(tS, z) = max{ln |z1z2|, ln |z1(z1 + z2 − t)|, ln |z2(z1 + z2 − t)|,
1
2 ln |z1z2(z1 + z2 − t)|}+O(1).

(g1(tS, .))t∈C∗ cv. loc. unif. outside O to g∞(z) =
max{ln |z1z2|, ln |z1(z1 + z2)|, ln |z2(z1 + z2)|, 1

2 ln |z1z2(z1 + z2)|}+O(1).

(ddcg∞)2({O}) = 2.
3

2
= 3 = |S| and ν(g∞, O) =

3

2
<

√
3.



Conjecture (P1)

In Cn, except for a finite number of integer values of r, for any general set
S = {p1, . . . , pr} of r points, the family of pluricomplex Green functions
(gB(O,1)(tS, .))t∈C∗ converges locally uniformly outside the origin of B(O, 1) to

r1/ngB(O,1)(O, .), when t tends to 0.

⇕

Conjecture (A1). Weak Version of Nagata Conjecture in Pn

In Pn, except for a finite number of integer values of r, for any general set
S = {p1, . . . , pr} of r points, Ω(S) = r1/n.



Global study

Now we consider a class of entire psh functions in Cn, with logarithmic poles
in a finite set of points S and with a logarithmic growth at infinity; and in
particular, the subclass of such functions which are also locally bounded
outside of S.

If u is a psh function in Cn

γu := lim sup
|z|→∞

u(z)

log ||z||
∈ [0,+∞].

Two affine invariants

Ωpsh(S) := inf{γu : u ∈ PSH(Cn), ν(u, p) ≥ 1 for any p ∈ S}.

Ω+
psh(S) := inf{γu : u ∈ PSH(Cn) ∩ L∞

loc(Cn \ S), ν(u, p) ≥ 1 for any p ∈ S}.

(this last one has been introduced by Coman-Nivoche (02)).



We can state two more conjectures (P2) and (P3).
(P2) can be seen as the dual version of the first one (P1).

Conjecture (P2).

In Cn, except for a finite number of integer values of r, for any general set S of
r points, we have : for any ϵ > 0, there exists an entire continuous psh function
v in L∞

loc(Cn \ S), such that ν(v, p) ≥ 1 for any p ∈ S any γv ≤ (1 + ϵ)|S|1/n.

Conjecture (P3).

In Cn, except for a finite number of integer values of r, for any general set S of
r points, we have : Ωpsh(S) = Ω+

psh(S).

Theorem (N-AIF 21)

(P1) ⇔ (P2) ⇔ (P3)



To prove this, we use a comparison principle which relates Lelong numbers
at the points of S of two psh functions with their logarithmic growth at
infinity (the proof of this result is similar to a result in D. Coman-S.
Nivoche-02, D. Coman-06).

Proposition (N-AIF 21)

Let S ⊂ Cn be a finite set. Let u and v be two psh functions in Cn s.t.
u ∈ L∞

loc(Cn \ S). Then∑
p∈S

ν(u, p)n−1ν(v, p) ≤ γn−1
u γv.



Nagata Conj. is ”almost” equivalent to SHGH Conj.

Fix S in C2r
∗ := {z = (z1, . . . , zr) ∈ C2r : zj ̸= zk,∀j ̸= k}.

If S is a ”Nagata point in C2r
∗ ”, then for any l ≥ 1 and d ≥ 1 such that

Ker(φS,d,l) isn’t reduced to {0}, then its dimension satisfies

max{1, (d+ 1)(d+ 2)

2
− r

l(l + 1)

2
} ≤ dim Ker(φS,d,l)

≤ (d+ 1)(d+ 2)

2
− (⌊

√
r.l⌋+ 1)(⌊

√
r.l⌋+ 2)

2
.



Thank you for your attention !


