On equilibrium problems on the real axis. Applications

Ramón Orive

Universidad de La Laguna. The Canary Islands, Spain. e-mail: rorive@ull.es

Based on joint works with **A. Martínez–Finkelshtein** (Univ. Almería, Spain), **E. A. Rakhmanov** (Univ. South Florida, Tampa, USA) and **Joaquín Sánchez Lara** (Univ. Granada, Spain).

Many applications of Equilibrium Problems in the External fields:

- Asymptotics of orthogonal polynomials
 - With respect to exponential weights
 - With respect to general varying weights (connection with multipoint rational approximation)
- Asymptotics of Heine-Stieltjes polynomials
- Limit mean density of eigenvalues of Random Matrices
- Continuum limit of Toda lattice and Soliton Theory (KdV)

Equilibrium Problem on a compact set

- K : compact subset of \mathbb{R} .
- t > 0, $M_t(K)$: measures σ supported on K such that $\sigma(K) = t$.

Under quite mild conditions on K, there exists a unique measure (Equilibrium or Robin measure) $\mu_{eq} = \mu_{eq,t}$, $supp \mu_{eq} \subset K$, minimizing the

Energy

$$I(\sigma) = -\int \int \log |x-z| \, d\sigma(x) d\sigma(z) \,, \ \sigma \in M_t(K) \,.$$

• $supp \mu_{eq} = K$.

•
$$V^{\mu_{eq}}(z) = -\int \log |x - z| d\mu_{eq}(x) = c_t = const, \ z \in K$$

• $\min_{z \in K} V^{\mu_{eq}}(z) = \max_{\sigma \in M_t(K)} (\min_{z \in supp \sigma} V(\sigma; z))$.

The simplest example: $K = [a, b] \subset \mathbb{R}, t = 1$

Equilibrium measure

$$d\mu_{eq}(x) = \frac{1}{\pi} \frac{dx}{\sqrt{(x-a)(b-x)}}, \ x \in (a,b)$$

$$V^{\mu_{eq}}(z) = \log\left(\frac{4}{b-a}\right), \ x \in (a,b)$$

Ramón Orive.

rorive@ull.es

MWAA, Bloomington, October 2015.

< □ →

Equilibrium Problem on a compact set

A bit more involved example: $K = [a, b] \cup [c, d] \subset \mathbb{R}, \ b < c, \ t = 1$

Equilibrium measure $d\mu(x) = \frac{1}{\pi} \frac{(x-\xi) \, dx}{\sqrt{|(x-a)(x-b)(x-c)(x-d)|}}, \ x \in (a,b) \cup (c,d)$ $\xi \in (b,c), \ \int_b^c \frac{(x-\xi) \, dx}{\sqrt{(x-a)(x-b)(x-c)(x-d)}} = 0$

Equilibrium Problems in the presence of external fields

• Σ a closed subset of $\mathbb C$ (possibly unbounded)

• φ an "admissible" external field (Saff-Totik, 1997), $\omega(z) = e^{-\varphi(z)}$ (weight). In particular, for an unbounded Σ , and certain t > 0, it means:

$$\lim_{|z|\to\infty,\,z\in\Sigma}\left(\varphi(z)-t\log|z|\right)=+\infty.$$

Then, there exists a unique measure $\mu_{\varphi}=\mu_{\varphi,t}\in M_t(\Sigma)$ minimizing the

Weighted Energy

$$I_{\varphi}(\sigma) = -\int \int \log \left(|x - z| \omega(x) \omega(z) \right) \, d\sigma(x) \, d\sigma(z)$$

= $-\int \int \log |x - z| \, d\sigma(x) \, d\sigma(z) + 2 \int \varphi(x) \, d\sigma(x)$

Ramón Orive.

rorive@ull.es

MWAA, Bloomington, October 2015.

Equilibrium Problems in the presence of external fields

$$S_{\varphi} = S_{\varphi,t} = = \operatorname{supp} \, \mu_{\varphi} \,$$
 is a compact subset of Σ .

Total ("chemical") potential

$$W^{\mu_{\varphi}}(z) = V^{\mu_{\varphi}}(z) + \varphi(z) \left\{ egin{array}{c} = F_{\omega} = F_{\omega,t} \,, \; z \in S_{arphi} \ \ge F_{\omega} \,, \; z \in \Sigma \end{array}
ight.$$

S_{φ} maximizes the

F-functional (Mhaskar-Saff, Saff-Totik)

$$F(K) = t \log \operatorname{cap}(K) - \int \varphi(x) d\mu_{eq,K}(x)$$

among all the compact subsets K of Σ .

Suppose that $\Sigma \subset \mathbb{R}$. Then:

- φ convex \implies S_{φ} is an interval.
- φ real analytic $\implies S_{\varphi}$ is comprised by a finite union of intervals.

But... in general, finding the support S_{φ} is a difficult task!

• $\varphi(x) = x^2$, t = 1. φ is convex and symmetric $\Longrightarrow S_{\varphi}$ maximize F(K), with K = [-a, a], $a > 0 \Longrightarrow S_{\varphi} = [-1, 1]$ and

$$\mu'_{\varphi}(x) = \frac{2}{\pi}\sqrt{1-x^2}$$

•
$$\varphi(x) = \frac{2}{3} x^4$$
, $t = 1$. $\Longrightarrow S_{\varphi} = [-1, 1]$ and

$$\mu_{\varphi}'(x) = \frac{4}{3\pi} \left(1 + 2x^2\right) \sqrt{1 - x^2}$$

$$\varphi(x) = P(x) + \sum_{j=1}^{q} \alpha_j \log |x - z_j|, \ q \ge 1, \ z_j \in \mathbb{C} \setminus \mathbb{R}, \ \alpha_j \in \mathbb{R},$$

$$P(x) = \frac{x^{2p}}{2p} + \sum_{j=1}^{2p-1} c_j x^j, \ p > 0 \text{ or } P \equiv 0,$$

$$\varphi'(x) = P'(x) + \sum_{j=1}^{q} \frac{\alpha_j \left(x - \operatorname{Re} z_j\right)}{(x - z_j)(x - \overline{z_j})} = \frac{E(x)}{D(x)}$$

$$D(x) = \prod_{j=1}^{q} (x - z_j)(x - \overline{z_j}).$$

Ramón Orive.

MWAA, Bloomington, October 2015.

< □ >

If p > 0 (φ has a polynomial part)
 ⇒ φ is admissible for any t > 0

• If p = 0 (φ is "purely rational") $\implies \varphi$ is weaker $\implies \varphi$ is admissible only for $t \in (0, T)$,

$$T = \sum_{j=1}^{q} \alpha_j$$

Equilibrium measure

• Size of the measure, "time" or "temperature"

$$M_t(\mathbb{R}) = \{ \sigma : \sigma(\mathbb{R}) = t > 0 \}$$

• Support of the equilibrium measure

$$S_t = S_{\varphi,t} = \operatorname{supp} \mu_t = \bigcup_{j=1}^k [a_{2j-1}, a_{2j}], \ 1 \le k \le p+q$$

• Density of the equilibrium measure $\mu'_t(z) = \frac{1}{\pi} \frac{B(z) \sqrt{A(z)}}{D(z)}, \quad A(z) = \prod_{j=1}^{2k} (z - a_j)$

Ramón Orive.

< □ >

First tool: Algebraic equation for the Cauchy Transform

$$((-\widehat{\mu_t}(z) + \varphi'(z))^2 = R(z) = \frac{B(z)^2 A(z)}{D(z)^2}, \ z \in \mathbb{C} \setminus S_t,$$
$$\widehat{\mu_t}(z) = \int \frac{d\mu_t(y)}{z - y}$$
$$A(z) = \prod_{j=1}^{2k} (z - a_j), B(z) = \prod_{j=1}^{2(p+q)-k-1} (z - b_j),$$
$$a_1, \dots, a_{2k} \in \mathbb{R}, \ 1 \le k \le p + q.$$
$$D(x) = \prod_{j=1}^q (x - z_j)(x - \overline{z_j})$$

Ramón Orive.

< □ >

Second tool: A dynamical viewpoint (Buyarov-Rakhmanov, 1999)

• Let $t \in (0, +\infty)$. Except for a few values of t, μ_t and its support S_t depend analytically on t

•
$$\frac{d\mu_t}{dt}|_{t=t_0} = \omega_{t_0} ,$$

 ω_{t_0} : Robin measure (equilibrium measure in absence of external field) of the compact set S_{t_0} .

 \implies A dynamical system for zeros of A and B: endpoints of S_t and other zeros of the density!!!

$$\begin{aligned} \dot{a_j} &= \frac{\partial a_j}{\partial t} = -\frac{2D(a_j)F(a_j)}{\prod_{k \neq j} (a_j - a_k) B(a_j)}, \ j = 1, \dots, 2k, \\ \dot{b_j} &= \frac{\partial b_j}{\partial t} = -\frac{D(b_j)F(b_j)}{\prod_{k \neq j} (b_j - b_k) A(b_j)}, \ j = 1, \dots, 2(p+q) - k - 1, \\ F &\in \mathbb{P}_{k-1} : \int_{a_{2j}}^{a_{2j+1}} \frac{F(x)}{\sqrt{A(x)}}, dx = 0, \ j = 1, \dots, k - 1. \\ D(x) &= \prod_{j=1}^q (x - z_j)(x - \overline{z_j}) \end{aligned}$$

Ramón Orive.

< □ >

Singularities: collisions/bifurcations of zeros of A and/or B

- Singularity of type I: at a time t = T a real zero b of B (a double zero of R_t) splits into two simple zeros a₋ < a₊, and the interval [a₋, a₊] becomes part of S_t (birth of a cut). Phase transition: the number of cuts increases.
- Singularity of type II: at a time t = T two simple zeros a_{2s} and a_{2s+1} of A (simple zeros of R_t) collide (*fusion of two cuts* or *closing of a gap*). Phase transition: the number of cuts decreases.
- Singularity of type III: at a time t = T a pair of complex conjugate zeros b and b of B (double zeros of R_t) collide with a simple zero a of A, so that λ'_T(x) = O(|x − a|^{5/2}) as x → a. No phase transition occurs: the number of cuts remains unchanged.

General Polynomial External Field

$$\varphi(x) = \frac{x^{2p}}{2p} + \sum_{j=1}^{2p-1} t_j x^j, \quad t_j \in \mathbb{R},$$

Bleher, Eynard, Its, Kuijlaars, McLaughlin...

A. Martínez Finkelshtein, RO, E. A. Rakhmanov (CMP, 2015)

A suitably combined use of two ingredients \implies Full description of dynamics in the Quartic case:

$$\varphi(x) = \frac{x^4}{4} + t_3 x^3 + t_2 x^2 + t_1 x$$

In particular: Two-cut is possible iff φ is a "sufficiently non-convex" external field: Simple geometrical characterization in terms of the relative position of critical points of φ Motivation: Random Matrix Models G. S. Krishnaswami (2006):

1-matrix model whose action is given by

$$V(M) = tr \left(M^4 - \log(v + M^2) \right),$$

Computable toy-model for the gluon correlations in a baryon background. Generalized Gauss-Penner model: $\varphi(x) = ax^4 + bx^2 - c \ln |x|, \text{ extending the classical Gauss-Pener model: } \varphi(x) = x^2 - k \ln |x|.$ \Longrightarrow

$$\varphi(x) = x^4 - \log(x^2 + v), v > 0.$$

A particular case: Generalized Gauss-Penner model

RO, J. Sánchez Lara (JMAA, 2015)

$$\begin{split} \varphi(x) &= \alpha x^4 + \beta x^2 + \gamma \, \log(x^2 + v) \,, \, \beta, \gamma \in \mathbb{R} \,, \, \alpha, v > 0 \,, \\ & \Downarrow \\ \phi(x) &= 2\varphi(\sqrt{x}) = 2\alpha x^2 + 2\beta x + 2\gamma \log(x + v) \,, \, x \in [0, +\infty) \,. \\ & \Downarrow \end{split}$$

Simplified model in
$$[0, +\infty)$$

$$\phi(x) = \frac{1}{2}x^2 + \beta x + \gamma \log(x+1), x \in [0, +\infty).$$

Dynamics of the support wrt to t. Main questions

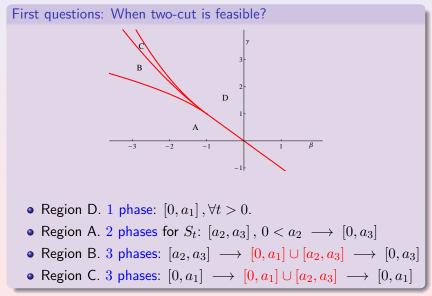
 \bullet For which values of (β,γ) is it feasible the two-cut case, that is:

When there exists some time interval (T_1,T_2) , $0 \leq T_1 < T_2$, such that S_t is comprised by two disjoint intervals for $t \in (T_1,T_2)$?

In this case, the support of the original equilibrium measure in the presence of φ is comprised by three disjoint intervals (three-cut case).

• For which values of (β, γ) , $S_t = [0, a_1(t)]$, for any t > 0 where $a_1(t)$ is an increasing function of t? In this case, we have the one-cut case for the original equilibrium measure for every t > 0.

A particular case: Generalized Gauss-Penner model



"Purely" Rational External Fields: without polynomial part.

Motivation: Generalized Heine-Stieltjes Polynomials

$$E_{\varphi}(\zeta_1, \dots, \zeta_n) = \sum_{i < j} \log \frac{1}{|\zeta_i - \zeta_j|} + \sum_{i=1}^n \varphi(\zeta_i)$$
$$= \frac{1}{2} \left(\sum_{i \neq j} \log \frac{1}{|\zeta_i - \zeta_j|} + 2 \sum_{i=1}^n \varphi(\zeta_i) \right).$$

If for each n, $(\zeta_1^*, \ldots, \zeta_n^*)$ is minimal (Weighted Fekete Points), then

$$\nu_n = \frac{1}{n} \sum_{i=1}^n \delta_{\zeta_i^*} \xrightarrow{*} \mu_t = \mu_t(\varphi) \,.$$

Motivation: Generalized Heine-Stieltjes Polynomials In particular, when

$$arphi(x) = \sum_{j=1}^q \, lpha_j \, \log |x-z_j|\,, \ q \geq 1\,, \, z_j \in \mathbb{C} \setminus \mathbb{R}\,, \, lpha_j \in \mathbb{R}\,,$$

Then, $y(x) = y_n(x) = \prod_{i=1}^n (x - \zeta_i^*)$ (Heine-Stieltjes Polynomials) satisfy a linear ODE:

$$A_n y'' + B_n y' + C_n y = 0,$$

 A_n, B_n, C_n polynomials (generalized Lamé equation).

Motivation: Generalized Multi-Penner models in Random Matrix theory

Action given by

$$W(M) = \sum_{j=1}^{N} \mu_j \log(M - q_i),$$

Interest in Gauge Theory, as well as in Toda systems (R. Dijkgraaf, C. Vafa (2009), T. Eguchi (2010)).

Example of "purely" rational external fields: External Fields created by a couple of attractors

(RO–J. Sánchez, preprint):

 $arphi(x) = \log |x - z_1| + \gamma \, \log |x - z_2|,$ $z_1 = -1 + eta_1 i, \, z_2 = 1 + eta_2 i, \, eta_1, eta_2 > 0, \, \gamma > 0$

$$\varphi(x) = \frac{1}{2} \left(\log((x+1)^2 + \beta_1^2) + \gamma \log((x-1)^2 + \beta_2^2) \right)$$

is not convex but is real analytic \implies the support S_t , $t \in (0, 1 + \gamma)$ is comprised by a finite number of intervals (indeed, 1 or 2 intervals)

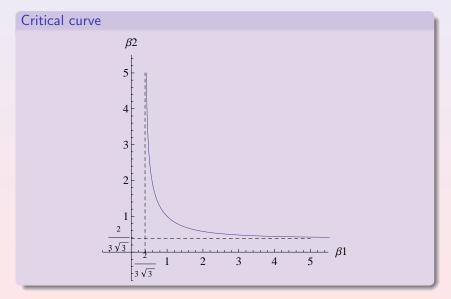
Main question: Which configurations of point masses ("charges" and "heights") are able to split the support into two intervals???

Look at the heights: β_1, β_2 Consider the bivariate polynomial:

$$f(x,y) = 27xy(x-y)^2 - 4(x^3 + y^3) + 204xy(x+y) - 48(x^2 - 7xy + y^2 + 4x + 4y) - 256$$

Critical curve in the (β_1, β_2) -plane: $f(\beta_1^2, \beta_2^2) = 0$

External Fields created by a couple of attractors



Ramón Orive.

rorive@ull.es

MWAA, Bloomington, October 2015.

Main Result

- If $(\beta_1^2, \beta_2^2) \in \overline{\Omega_{\infty}} \implies S_{\mu}$ consists of a single interval ("one-cut") for any (λ_1, λ_2) .
- If $(\beta_1^2, \beta_2^2) \in \Omega_0 \implies$ There exists a region in the (λ_1, λ_2) -plane for which S_μ consists of two disjoints intervals ("two-cut")

Remarks

- If the couple of masses is "quite far" from the real axis, then we have necessarily one-cut whatever the heights!
- The critical curve has horizontal and vertical asymptotes \implies If one of the masses is close enough to the real axis, then it is always possible to choose the charges to have two-cut.
- What finally determines the possible existence of a two-cut phase is the "degree of non-convexity" of the external field.

THANK YOU VERY MUCH!!! See you...In Tenerife (why not?)!!!

Ramón Orive.

rorive@ull.es

MWAA, Bloomington, October 2015.

< 🗆 🕨