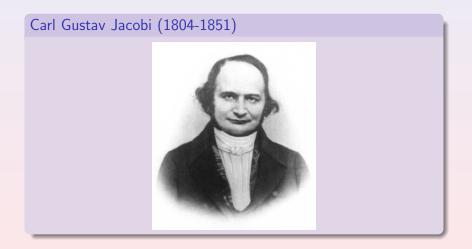
Electrostatic models for orthogonal and multiple orthogonal polynomials.

Ramón Orive

Universidad de La Laguna. The Canary Islands. Spain e-mail: rorive@ull.es

Joint work with **A. Martínez-Finkelshtein** (Baylor Univ., TX, USA, and Univ. Almería, Spain) and **Joaquín Sánchez Lara** (Univ. Granada, Spain).

Electrostatic interpretation of zeros of Jacobi Polynomials



Jacobi polynomials

$$\omega^{(\alpha,\beta)}(x) = (1-x)^{\alpha} (1+x)^{\beta}, \ \alpha,\beta > -1$$

$$\int_{-1}^{1} x^{k} P_{n}^{(\alpha,\beta)}(x) \omega^{(\alpha,\beta)}(x) dx = 0, \ k = 0, \dots, n-1$$

$$P_n^{(\alpha,\beta)}(z) = 2^{-n} \sum_{k=0}^n \binom{n+\alpha}{n-k} \binom{n+\beta}{k} (z-1)^k (z+1)^{n-k},$$

$$P_n^{(\alpha,\beta)}(z) = \frac{1}{2^n n!} (z-1)^{-\alpha} (z+1)^{-\beta} \left(\frac{d}{dz}\right)^n \left[(z-1)^{n+\alpha} (z+1)^{n+\beta} \right] ,$$

for $(\alpha, \beta) \in \mathbb{C}$.

n free unit charges in (-1, +1)

Two positive charges at the endpoints: a in +1 and b in -1

Charges interact according to the logarithmic potential

Equilibrium problem: To find the positions x_1, \ldots, x_n for the free charges in order to minimize the (logarithmic) energy of the system

$$E(x_1, \dots, x_n) = -\sum_{i < j} \ln|x_i - x_j| - a\sum_{i=1}^n \ln|1 - x_i| - b\sum_{i=1}^n \ln|1 + x_i|$$

 $E(x_1,\ldots,x_n)$ attains a global minimum on the simplex $-1 \le x_1 \le \ldots \le x_n \le 1$. This minimum is attained in an "inner" point: $-1 < x_1^* < x_2^* < \ldots < x_n^* < +1$

$$\frac{\partial E}{\partial x_k} (x_1^*, \dots, x_n^*) = 0, \ k = 1, \dots, n$$

$$\sum_{j \neq k} \frac{1}{x_k^* - x_j^*} + \frac{a}{x_k^* - 1} + \frac{b}{x_k^* + 1} = 0, \ k = 1, \dots, n,$$

$$Q_n(x) = \prod_{k=1}^n (x - x_k^*),$$

$$\frac{1}{2} \frac{Q_n''(x_k^*)}{Q_n'(x_k^*)} + \frac{a}{x_k^* - 1} + \frac{b}{x_k^* + 1} = 0 , k = 1, \dots, n,$$

Polynomial $(x^2-1)Q_n''(x)+2(a(x+1)+b(x-1))Q_n'(x)$, of degree $\leq n$, has the same zeros as Q_n , that is:

$$(x^{2}-1)Q_{n}''(x) + 2(a(x+1) + b(x-1))Q_{n}'(x) = \lambda_{n}Q_{n}(x)$$

Jacobi differential equation:

$$(x^{2} - 1)y''(x) + [-\beta + \alpha + (\alpha + \beta + 2)x]y'(x) = n(n + \alpha + \beta + 1)y(x)$$

 \Rightarrow The minimum energy takes place when free charges are located on zeros of the Jacobi polynomial $Q_n = P_n^{(\alpha,\beta)}$, with $\alpha = 2a-1$ and $\beta = 2b-1$ \Longrightarrow

$$a = \frac{\alpha + 1}{2}, b = \frac{\beta + 1}{2}$$

Extension: Unbounded intervals

Laguerre polynomials: $L_n^{(\alpha)}(x)$

$$\omega^{(\alpha)}(x) = x^{\alpha} e^{-x}, x \in (0, \infty), \alpha > -1$$

n positive unit charges in $[0, +\infty)$, a positive charge p at the origin.

Additional restriction:

$$\sum_{k=1}^{n} x_k \le Kn \to \sum_{k=1}^{n} x_k = Kn \to \text{Lagrange multipliers...}$$

Modern viewpoint (Ismail, 2000 ...): Action of the external field

$$\varphi(x) = x, x \in [0, \infty)$$

Extension: Unbounded intervals

Hermite polynomials: $H_n(x)$

$$\omega(x) = e^{-x^2}, x \in (-\infty, \infty)$$

n positive unit charges in \mathbb{R} .

Additional restriction:

$$\sum_{k=1}^{n} x_k^2 \le Kn \ \to \ \sum_{k=1}^{n} x_k^2 = Kn \ \to \ \text{Lagrange multipliers}...$$

Modern viewpoint (Ismail, 2000 ...): Action of the external field

$$\varphi(x) = \frac{x^2}{2}, x \in \mathbb{R}$$

Simple example: Jacobi-Angelesco Polynomials.

V. Kaliaguine (1979); V. Kaliaguine, A. Ronveaux (1996). Polynomials $P_{n,n} \in \mathbb{P}_{2n}$ satisfying the following system of orthogonality conditions:

$$\int_{0}^{1} x^{k} P_{n,n}(x) (1-x)^{\alpha} (1+x)^{\beta} x^{\gamma} dx = 0, k = 0, ..., n-1,$$

$$\int_{0}^{0} x^{k} P_{n,n}(x) (1-x)^{\alpha} (1+x)^{\beta} |x|^{\gamma} dx = 0, k = 0, ..., n-1,$$

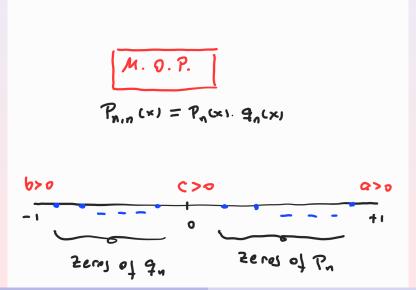
where $\alpha, \beta, \gamma > -1$.

Since intervals [-1,0] and [0,1] have disjoint interiors $\implies P_{n,n}$ has exactly n simple zeros in each interval.

$$P_{n,n}(x) = p_n(x) q_n(x) ,$$

where
$$p_n\left(x\right)=\prod\limits_{k=1}^n\left(x-x_k\right)$$
 and $q_n\left(x\right)=\prod\limits_{k=1}^n\left(x-y_k\right)$, with $\left\{x_k\right\}_{k=1}^n\subset\left(0,1\right)$ and $\left\{y_k\right\}_{k=1}^n\subset\left(-1,0\right)$.

- Rodrigues Formula
- O.D.E. (3rd order!)



Jacobi case:

$$P_n^{(\alpha,\beta)}$$
 minimizes $\int_{-1}^1 \Pi(x)^2 (1-x)^\alpha (1+x)^\beta dx$
$$a = \frac{\alpha+1}{2}, b = \frac{\beta+1}{2}$$

Jacobi-Angelesco case:

$$P_{nn}(x)=p_n(x)q_n(x)$$
, where
$$p_n \text{ minimzes } \int_0^1 \Pi(x)^2 q_n(x) (1-x)^\alpha (1+x)^\beta \ x^\gamma \ dx$$

$$q_n \text{ minimzes } \int_{-1}^0 \Pi(x)^2 p_n(x) (1-x)^\alpha (1+x)^\beta \ |x|^\gamma \ dx$$

⇒ It suggest to try an electrostatic setting where the mutual repulsion between charges of the same interval is twice the corresponding repulsion between charges of different intervals!

$$\frac{E(x_{1}, \dots, x_{n}; y_{1}, \dots, y_{n})}{2 \sum_{1 \leq i < j \leq n} \log \left(\frac{1}{|x_{i} - x_{j}|}\right) + 2 \sum_{1 \leq i < j \leq n} \log \left(\frac{1}{|y_{i} - y_{j}|}\right)
+ \sum_{i,j=1}^{n} \log \left(\frac{1}{|x_{i} - y_{j}|}\right) + a \left(\sum_{i=1}^{n} \log \left(\frac{1}{|x_{i} - 1|}\right) + \sum_{i=1}^{n} \log \left(\frac{1}{|y_{i} - 1|}\right)\right)
+ b \left(\sum_{i=1}^{n} \log \left(\frac{1}{|x_{i} + 1|}\right) + \sum_{i=1}^{n} \log \left(\frac{1}{|y_{i} + 1|}\right)\right)
+ c \left(\sum_{i=1}^{n} \log \left(\frac{1}{|x_{i}|}\right) + \sum_{i=1}^{n} \log \left(\frac{1}{|y_{i}|}\right)\right)$$

Do the zeros of $P_{n,n}$ minimize (or define a critical configuration, at least) of such energy functional? NOT!!!

ACTUAL SOLUTION:

A. Martínez Finkelshtein, R.O., J. Sánchez Lara (2021).

We associate to $P_{n,n}$ two electrostatic "partners" $S_{n,1}, S_{n,2}$, such that:

- $S_{n,1}, S_{n,2}$ have degree n+1
- At least n-1 zeros of $S_{n,1}$ (resp. $S_{n,2}$) lie on (-1,0) (resp. (0,1)) and interlace with those of q_n (resp. p_n)

If we assign a charge of value -1/2 ("attractive") to each zero of $S_{n,1}$ (resp. $S_{n,2}$), then the zeros of $P_{n,n}$ define a critical configuration for each of the following electrostatic problems:

Equilibrium problem

- ullet A charge of value +1 placed at each zero of $P_{n,n}$
- Positive charges of values $\frac{\alpha+1}{2}, \frac{\gamma+1}{2}, \frac{\beta+1}{2}$, placed, respect., at x=1, x=0, x=-1.
- Negative charges of values -1/2 placed at the zeros of $S_{n,1}$ (resp., $S_{n,2}$), n-1 of which interlace with those of q_n (resp., p_n).

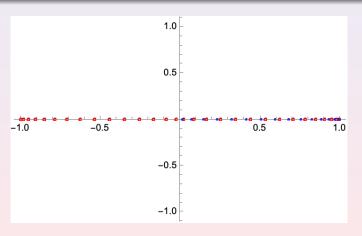


Figure: zeros of $p_{\mathbf{n}}$ (empty circles, all on [-1,1]) and of $S_{\mathbf{n},1}$ (filled circles, all on [0,1]) for $\mathbf{n}=(15,15)$.

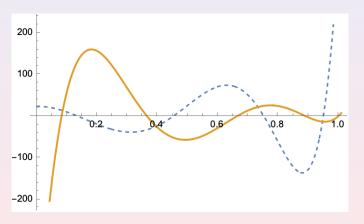


Figure: Graph of $p_{\bf n}$ (dashed line) and $S_{{\bf n},2}$ (thick line) on [0,1] for ${\bf n}=(4,4)$ in the Appell's case: $\alpha=\beta=\gamma=0$.

- $\Delta_1, \Delta_2 \subset \mathbb{R}$, w_i positive weights on Δ_i , i = 1, 2, $\mathbf{n} = (n_1, n_2)$.
- p_n , of degree $N = n_1 + n_2$, provided it exists, satisfying

$$\int_{\Delta_i} x^j p_{\mathbf{n}}(x) w_i(x) dx \begin{cases} = 0, & j \le n_i - 1, \\ \neq 0, & j = n_i, \end{cases} \qquad i = 1, 2.$$

We assume that both weights are semiclassical:

$$\frac{w_i'(x)}{w_i(x)} = \frac{B_i}{A_i}, i = 1, 2.$$

$$\sigma_i := \max\{\deg(A_i) - 2, \deg(B_i) - 1\}, \quad i = 1, 2.$$

Now, $p_{\mathbf{n}}$ has two electrostatic partners: $S_{\mathbf{n},1}, S_{\mathbf{n},2}$, of respective degrees $n_2 + \sigma_1, n_1 + \sigma_2$.

Pair of ODEs

 $p_{\mathbf{n}}$, of degree $N=n_1+n_2\,,$ assuming it exists, satisfies the pair of ODEs:

$$A_i S_{\mathbf{n},i} y'' + (A_i' S_{\mathbf{n},i} - A_i S_{\mathbf{n},i}' + B_i S_{\mathbf{n},i}) y' + C_{\mathbf{n},i} y = 0.$$

Denoting by $x_{\mathbf{n},k}$, $k=1,\ldots,N$, the zeros of $p_{\mathbf{n}}$,

$$y''(x_{\mathbf{n},k}) + \left(\frac{A_i'}{A_i} + \frac{B_i}{A_i} - \frac{S_{\mathbf{n},i}'}{S_{\mathbf{n},i}}\right)(x_{\mathbf{n},k})y'(x_{\mathbf{n},k}) = 0$$

Equilibrium problem

- A charge of value +1 placed at each zero of p_n . These charges repel each other.
- Positive charges at the endpoints of the supporting intervals of the weights w_i , i = 1, 2. They are also repellent.
- Negative charges of values -1/2 placed at the zeros of $S_{n,1}$ (resp., $S_{n,2}$).

This general electrostatic model is still formal: in general, the fact that the degree of $p_{\mathbf{n}}$ is maximal, as well as the simplicity and location of its zeros are not guaranteed ("normality") \Longrightarrow We need to impose additional restrictions

Particular cases studied in the literature

- Angelesco setting: Intervals with disjoint interiors.
- Nikishin setting: Matching intervals, different weights related by a condition.
- Rakhmanov and others' setting: Overlapping intervals and weights related by a Nikishin-type condition.

Angelesco setting

- $\bullet \ \Delta_1, \Delta_2 \subset \mathbb{R} \ , \ \dot{\Delta}_1 \cap \dot{\Delta}_2 = \emptyset$
- w_1, w_2 semiclassical weights. Polynomial $p_{\mathbf{n}}$ satisfies n_1 orthogonality conditions on Δ_1 , and n_2 on Δ_2 , with $\mathbf{n} = (n_1, n_2)$ and $N = n_1 + n_2$.

Under these assumptions, $p_{\mathbf{n}}$ is normal (of degree N) and has exactly n_i simple zeros in $\dot{\Delta}_i$, i=1,2.

electrostatic partners

Polynomial $S_{\mathbf{n},1}$ (respect. $S_{\mathbf{n},2}$) has n_2-1 (respect. n_1-1) zeros, out of a total of $n_2+\sigma_1$ (resp. $n_1+\sigma_2$) interlacing with those of $p_{\mathbf{n}}$ on Δ_2 (respect. Δ_1).

Angelesco setting

Electrostatic model

The $N=n_1+n_2$ zeros of $p_{\bf n}$, equipped with unit positive charges, are in equilibrium in the external field created by the orthogonality weights w_1,w_2 and

- charges of value -1/2 ("attractors") placed at the zeros of $S_{\mathbf{n},1}$; or
- charges of value -1/2 ("attractors") placed at the zeros of $S_{\mathbf{n},2}.$

Angelesco setting

Example. APPELL's polynomials:

$$w_1(x) = w_2(x) \equiv 1$$
; $\Delta_1 = [-1, 0]$, $\Delta_2 = [0, 1]$.

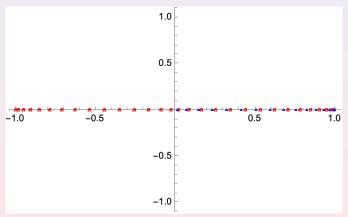


Figure: zeros of $p_{\mathbf{n}}$ (empty circles, all on [-1,1]) and of $S_{\mathbf{n},1}$ (filled circles, all on [0,1]) for $\mathbf{n}=(15,15)$.

Nikishin setting

Nikishin (1980) proposed an elegant AT–system w_1, w_2 . We present a slightly generalized version of it:

- $\Delta_1 = \Delta_2 = [a, b]$
- $\frac{w_2(x)}{w_1(x)} = |\Pi(x)|u(x)$, $u(x) = \int_c^d \frac{v(t)dt}{x-t}$, $(a,b) \cap (c,d) = \emptyset$ and Π an arbitrary polynomial of degree m without zeros in $(a,b) \cup (c,d)$.

But we also have to impose an important restriction:

• w_1 and u must be semiclassical.

Example:
$$w_1(x) = |x-a|^{\alpha} |x-b|^{\beta}$$
, $w_2(x) = |x-a|^{\alpha} |x-b|^{\beta} |x-c|^{\gamma} |x-d|^{\delta}$, $x \in (a,b)$, with $(a,b) \cap (c,d) = \emptyset$ and $\alpha,\beta,\gamma,\delta > -1$. and $\gamma,\delta \notin \mathbb{Z}$, $\gamma+\delta \in \mathbb{Z}$.

Nikishin setting

Electrostatic model

- $\ell = \min(n_2 1, n_1 m), \quad m = \deg(\Pi)$
- p_n has at least $n_1 + \ell + 1$ sign changes on (a, b)
- $S_{n,1}$ has at least ℓ sign changes in (c,d).

If $n_2 \leq n_1 - m + 1$, so that $\ell = n_2 - 1 \Longrightarrow p_{\mathbf{n}}$ has exactly $N = n_1 + n_2$ simple zeros in (a,b), while $S_{\mathbf{n},1}$ has $\geq n_2 - 1$ zeros in (c,d), exactly as in the classical Nikishin setting (m=0).

Nikishin setting

$$\frac{\omega_{2}(x)}{\omega_{1}(x)} = |\pi(x)| \omega(x), \quad \omega(x) = \int_{0}^{\infty} \frac{x-t}{d\sigma(t)}$$

Rakhmanov's setting

Overlapping intervals: Aptekarev (2008), Aptekarev and Lysov (2011) ...

A particular Rakhmanov's case: Rakhmanov (2011)

- Diagonal setting: $n_1 = n_2 = n$, $\mathbf{n} = (n, n)$, N = 2n
- $\Delta_1 \subseteq \Delta_2$
- Nikishin type condition: $\frac{w_2(x)}{w_1(x)} = u(x)$, $u(x) = \int_{\Delta_2} \frac{v(t)dt}{x-t}$, $\dot{\Delta}_2 \cap \dot{\Delta}_3 = \emptyset$

Rakhmanov proved that at least N-5=2n-5 zeros of $p_{\mathbf{n}}$ lie on Δ_2 .

Rakhmanov's setting

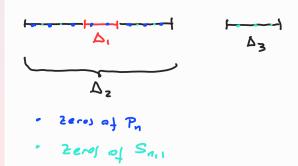
But ... what about its electrostatic partners $S_{n,i}$, i = 1, 2???

Observe that, by orthogonality, $p_{\mathbf{n}}$ has n+r zeros in $\cdot \Delta_1$, with $0 \leq r \leq n$, and s zeros in $\Delta_2 \setminus \Delta_1$, with $0 \leq s \leq n$ and $r+s \leq n$. Then, we proved that:

Zeros of $S_{\mathbf{n},1}$

 $S_{\mathbf{n},1}$ has at least s-2 zeros in $\Delta_2\setminus\Delta_1$, which interlace with those of $p_{\mathbf{n}}$ placed there, and at least r-3 in Δ_3 .

Rakhmanov's setting



Electrostatic partners

BUT...WHO THE HECK ARE THESE GUYS???

$$S_{\mathbf{n},i}$$
, $i = 1, 2???$

Electrostatic partners

$$S_{\mathbf{n},i} := D_{w_i}[p_{\mathbf{n}}] = \det \begin{pmatrix} p_{\mathbf{n}} & \widehat{p}_{\mathbf{n},i} \\ A_i p'_{\mathbf{n}} & A_i (\widehat{p}_{\mathbf{n},i})' - B_i \widehat{p}_{\mathbf{n},i} \end{pmatrix}$$
$$\frac{w'_i}{w_i} = \frac{B_i}{A_i}, \ \widehat{p}_{\mathbf{n},i}(x) = \int_{\Delta_i} \frac{p_{\mathbf{n}}(t)w_i(t)}{t - x} dt$$

Electrostatic partners

We have applied this electrostatic approach to several examples studied in the literature:

- Jacobi polynomials with non-standard values of parameters.
- Multiple Hermite polynomials.
- Multiple Laguerre polynomials of first and second kind.
- Jacobi-Piñeiro polynomials.
- Angelesco-Jacobi polynomials.
- Multiple orthogonal polynomials for the cubic weight.

GREETINGS FROM TENERIFE

THANK YOU SO MUCH!!! MUCHAS GRACIAS!!!

Teide: Volcano in Tenerife

(January 2022)