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- There are two pumps very close to each other @
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Consider a set Xy = {x1,Xp, ..., Xy} distributed in a set X. How can
we measure its distribution?

Separation

Define §(Xn) = miniy [xi — Xj|.

Discrepancy

If 1 is a probability measure on X, define

D(Xn) = sup, sup, |g#{x € B(x, 1)} — u(B(x,1))|.
Covering radius

Define p(Xy) = sup, min; |y — Xi|.

It measures the largest ball that does not intersect Xy.
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Consider the unit sphere S? c R?, equipped with the normalized
surface measure. The following holds:

- For any set Xy: 6(Xy) and this bound is attained:;

< \/71
- For any set Xy: p(Xn) =

fr
- There is an example of a set Xy for which

and this bound is attained;

c3y/logN

D(XN) < Nj 4
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We briefly explain how to obtain sets Xy with almost perfect
separation and covering properties. Suppose s > 0, and
Xn = {X1,..., Xy} Is a set that minimizes
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where the minimum is taken over all N-point sets. Here is what
happens on S%

- 1f0<s<2ors>2then d(Xy) = % (Damelin, Dragney,
Kuijlaars, Maymeskul, Saff, Sun);

- Ifs=10rs>2then p(Xy) <
Maymeskul).

©_(Dahlberg, Damelin,
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We consider S3. For a positive integer n, denote
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We consider S3. For a positive integer n, denote

En) == \%{ﬁ

The points in £(n) cover S* badly: if N := #&(n), then

+ X3+ X34+ X2 =Nt X, X0, X3, X4 € Z}.

p(E(n)) = NTVke,

In the same paper Bourgain, Rudnick and Sarnak show that
]EP(XN) < N71/3+87

where Xy = {X1,...,xy} are uniformly distributed over S°.
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Consider a compact set X, equipped with a probability measure p.
What if we distribute the points x4, ...,xy randomly and
independently according to u? Of course, every single set Xy will
have its separation, discrepancy and covering radius. In average,
how bad are these properties of random points compared to the
“best” configurations? What is known for S? is summarized in the
following table.

‘ Best possible ‘ E Reference
5(Xn) % g Brauchart, Dick, Saff, Sloan,
Wang, Wommersley
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Suppose s is a positive integer, and S is a compact closed '
s-dimensional manifold. Then
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where mg is the s-dimensional Lebesgue measure, and ws is the
measure of the s-dimensional unit ball.

The proof relies on the following uniform limit:

r—°ms(B(x,r)NS) = ws, r— 0, x€S.
(The s-density exists at every point of K, and the limit is uniform.)
Example

The above limit is clearly uniform for a sphere S9. Thus, the constant
we get is

((d —H)%w)vd.
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ms(S)

= )VS, it was essential (and sufficient!)
to have r>ms(B(x,r) N S) =% ws as r — 0. An easy example

S = $? U {(2015,2015,2015)} shows that if this limit is not equal to ws
even at one single point, then the theorem might fail.

To achieve the constant (

More natural examples of such a situation is a unit ball B(0,1) ¢ R?
and a unit cube [0,1]¢ ¢ RY. While at almost every point x it holds
that r=9mg(B(x, r) N K) — wy, it is not uniform, and on the boundary
the limit is not equal to wq. Surprisingly, this makes a difference,
yielding the following.

Theorem

. 1/d o\ 1/d
limn_s00 Ep(Xn; B(0, 1)) - {ﬁ] = (%) compare to 1;

_ 1/d .\ 1/d
limyoo EpO; [0,1]7) - [ = (%) compare to (1/wa)""".
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WHAT HAPPENS WHEN THE DENSITY NEVER EXISTS?

Consider the middle 1/3 cantor set C equipped with the Hausdorff
measure u := Higgo/ l10g3- It is an exercise that

- The measure p is regular; i.e, for s = log2/log3 we have

cr’ < p(B(x,r)) < Cr®, xecC, r<1/2;

- The limit im0 r—=u(B(x, r)) does not exist for y-almost every
x e C

We can handle this case with a two-sided estimate instead of the
asymptotic behavior. That is,

logN\"/®
Ep(XN)x< ﬁ > .
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Suppose X is a compact metric space, equipped with a probability
Borel measure p. We assume that there exists a positive, strictly
increasing function ®: R — R with following properties:

~limL o @(r) = 0;

- ®is doubling; i.e., ®(2r) < Cd(r) for sufficiently small values of r;

- ® controls y; i.e,

cd(r) < u(B(x,r)) < CP(r), r=0, xe X.

Then

P [QCI)‘1 <[O§N> < p(Xn) < ¢! (losNﬂ —1, N—= oo;

Ep(Xy) =< &~ <loﬁ N> .
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APPLICATION: e-COVERINGS

A set Xy is an e-covering of X, if any point of X can be approximated
by a point of Xy up to e. On a smooth s-dimensional manifold the
best e-covering will have cardinality %. The consequence of our
theorems is:

Random =-covering

Suppose N = ¢~*log(1/¢). Then, with high probability, a random set
Xn of N points is an e-covering of a smooth s-dimensional manifold
K.
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