
covering radius of randomly distributed
points

Alexander Reznikov
October 11, 2015

Vanderbilt University



in the memory of v. p. havin

1



in the memory of v. p. havin

1



in the memory of v. p. havin

2



in the memory of v. p. havin

3



gas pumps

∙ There are two pumps very close to each other

∙ However, they “cover” the map pretty good: every vehicle has a
pump at a relatively small distance
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several properties of finite sets

Consider a set XN = {x1, x2, . . . , xN} distributed in a set X . How can
we measure its distribution?

Separation

Define δ(XN) = mini ̸=j |xi − xj|.

Discrepancy

If µ is a probability measure on X , define
D(XN) = supx supr

∣∣ 1
N#{xj ∈ B(x, r)} − µ(B(x, r))

∣∣.
Covering radius

Define ρ(XN) = supy mini |y− xi|.

It measures the largest ball that does not intersect XN.
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sphere s2

Consider the unit sphere S2 ⊂ R3, equipped with the normalized
surface measure. The following holds:

∙ For any set XN: δ(XN) ⩽ c1√
N , and this bound is attained;

∙ For any set XN: ρ(XN) ⩾ c2√
N , and this bound is attained;

∙ There is an example of a set XN for which

D(XN) ⩽
c3
√
logN

N3/4 .
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an energy approach

We briefly explain how to obtain sets XN with almost perfect
separation and covering properties. Suppose s > 0, and
XN = {x1, . . . , xN} is a set that minimizes

min
∑
i

∑
j̸=i

1
|xi − xj|s

,

where the minimum is taken over all N-point sets.

Here is what
happens on S2:

∙ If 0 < s < 2 or s > 2 then δ(XN) ⩾ c1√
N (Damelin, Dragnev,

Kuijlaars, Maymeskul, Saff, Sun);
∙ If s = 1 or s > 2 then ρ(XN) ⩽ c2√

N (Dahlberg, Damelin,
Maymeskul).
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bourgain-rudnick-sarnak approach

We consider S3. For a positive integer n, denote

E(n) := 1√
n
{x21 + x22 + x23 + x24 = n : x1, x2, x3, x4 ∈ Z}.

The points in E(n) cover S3 badly: if N := #E(n), then

ρ(E(n)) ⩾ N−1/4+ε.

In the same paper Bourgain, Rudnick and Sarnak show that

Eρ(XN) ⩽ N−1/3+ε,

where XN = {x1, . . . , xN} are uniformly distributed over S3.
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randomization

Consider a compact set X , equipped with a probability measure µ.
What if we distribute the points x1, . . . , xN randomly and
independently according to µ?

Of course, every single set XN will
have its separation, discrepancy and covering radius. In average,
how bad are these properties of random points compared to the
“best” configurations? What is known for S2 is summarized in the
following table.

Best possible E Reference

δ(XN) c1√
N

C1
N Brauchart, Dick, Saff, Sloan,

Wang, Wommersley

D(XN) ⩽ c2
√

log N
N3/4

C2√
N Aistleitner, Brauchart, Dick

ρ(XN) c3√
N
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main theorem for manifolds

Suppose s is a positive integer, and S is a compact closed C1,1
s-dimensional manifold. Then

lim
N→∞

Eρ(XN) ·
[

N
logN

]1/s
=

(
ms(S)
ωs

)1/s
,

where ms is the s-dimensional Lebesgue measure, and ωs is the
measure of the s-dimensional unit ball.

The proof relies on the following uniform limit:

r−sms(B(x, r) ∩ S) ⇒ ωs, r → 0, x ∈ S.

(The s-density exists at every point of K, and the limit is uniform.)

Example

The above limit is clearly uniform for a sphere Sd. Thus, the constant
we get is (

(d+ 1)ωd+1
ωd

)1/d
.
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ball, cube

To achieve the constant
(

ms(S)
ωs

)1/s
, it was essential (and sufficient!)

to have r−sms(B(x, r) ∩ S) ⇒ ωs as r → 0.

An easy example
S = S2 ∪ {(2015, 2015, 2015)} shows that if this limit is not equal to ωs

even at one single point, then the theorem might fail.

More natural examples of such a situation is a unit ball B(0, 1) ⊂ Rd

and a unit cube [0, 1]d ⊂ Rd. While at almost every point x it holds
that r−dmd(B(x, r) ∩ K) → ωd, it is not uniform, and on the boundary
the limit is not equal to ωd. Surprisingly, this makes a difference,
yielding the following.

Theorem

limN→∞ Eρ(XN;B(0, 1)) ·
[

N
log N

]1/d
=

(
2(d−1)

d

)1/d
compare to 1;

limN→∞ Eρ(XN; [0, 1]d) ·
[

N
log N

]1/d
=

(
2d−1

dωd

)1/d
compare to (1/ωd)

1/d
.
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what happens when the density never exists?

Consider the middle 1/3 cantor set C equipped with the Hausdorff
measure µ := Hlog 2/ log 3. It is an exercise that

∙ The measure µ is regular; i.e., for s = log 2/ log 3 we have

crs < µ(B(x, r)) < Crs, x ∈ C, r < 1/2;

∙ The limit limr→0 r−sµ(B(x, r)) does not exist for µ-almost every
x ∈ C.

We can handle this case with a two-sided estimate instead of the
asymptotic behavior. That is,

Eρ(XN) ≍
(
logN
N

)1/s
.
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metric space theorem

Suppose X is a compact metric space, equipped with a probability
Borel measure µ.

We assume that there exists a positive, strictly
increasing function Φ: R → R with following properties:

∙ limr→0 Φ(r) = 0;
∙ Φ is doubling; i.e., Φ(2r) ⩽ CΦ(r) for sufficiently small values of r;
∙ Φ controls µ; i.e.,

cΦ(r) ⩽ µ(B(x, r)) ⩽ CΦ(r), r ≈ 0, x ∈ X .

Then

∙

P
[
c1Φ−1

(
logN
N

)
⩽ ρ(XN) ⩽ c2Φ−1

(
logN
N

)]
→ 1, N → ∞;

∙
Eρ(XN) ≍ Φ−1

(
logN
N

)
.
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application: ε-coverings

A set XN is an ε-covering of X , if any point of X can be approximated
by a point of XN up to ε. On a smooth s-dimensional manifold the
best ε-covering will have cardinality c

εs .

The consequence of our
theorems is:

Random ε-covering

Suppose N ≈ ε−s log(1/ε). Then, with high probability, a random set
XN of N points is an ε-covering of a smooth s-dimensional manifold
K.
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Thank you!
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