COVERING RADIUS OF RANDOMLY DISTRIBUTED POINTS

Alexander Reznikov

October 11, 2015

Vanderbilt University

m2) (a+1) 28 >0 Yack. ISN 121 30 1////

GAS PUMPS

 \cdot There are two pumps very close to each other $\overline{\Im}$

GAS PUMPS

- There are two pumps very close to each other 😒
- However, they "cover" the map pretty good: every vehicle has a pump at a relatively small distance 🙂

Separation

Define $\delta(X_N) = \min_{i \neq j} |x_i - x_j|$.

Separation

Define $\delta(X_N) = \min_{i \neq j} |x_i - x_j|$.

Discrepancy

If μ is a probability measure on \mathcal{X} , define $D(X_N) = \sup_x \sup_r |\frac{1}{N} \# \{ x_j \in B(x, r) \} - \mu(B(x, r)) |.$

Separation

Define $\delta(X_N) = \min_{i \neq j} |x_i - x_j|$.

Discrepancy

If μ is a probability measure on \mathcal{X} , define $D(X_N) = \sup_x \sup_r |\frac{1}{N} \# \{x_j \in B(x, r)\} - \mu(B(x, r))|.$

Covering radius

Define $\rho(X_N) = \sup_{y} \min_{i} |y - x_i|$.

It measures the largest ball that does not intersect X_N .

Consider the unit sphere $\mathbb{S}^2\subset\mathbb{R}^3,$ equipped with the normalized surface measure. The following holds:

• For any set X_N : $\delta(X_N) \leq \frac{c_1}{\sqrt{N}}$, and this bound is attained;

Consider the unit sphere $\mathbb{S}^2\subset\mathbb{R}^3,$ equipped with the normalized surface measure. The following holds:

- · For any set X_N : $\delta(X_N) \leq \frac{c_1}{\sqrt{N}}$, and this bound is attained;
- · For any set X_N : $\rho(X_N) \ge \frac{c_2}{\sqrt{N}}$, and this bound is attained;

Consider the unit sphere $\mathbb{S}^2\subset\mathbb{R}^3,$ equipped with the normalized surface measure. The following holds:

- · For any set X_N : $\delta(X_N) \leq \frac{c_1}{\sqrt{N}}$, and this bound is attained;
- · For any set X_N : $\rho(X_N) \ge \frac{c_2}{\sqrt{N}}$, and this bound is attained;
- $\cdot\,$ There is an example of a set X_N for which

$$D(X_N) \leqslant \frac{C_3 \sqrt{\log N}}{N^{3/4}}.$$

We briefly explain how to obtain sets X_N with almost perfect separation and covering properties. Suppose s > 0, and $X_N = \{x_1, \ldots, x_N\}$ is a set that minimizes

$$\min\sum_i \sum_{j\neq i} \frac{1}{|x_i - x_j|^s},$$

where the minimum is taken over all N-point sets.

We briefly explain how to obtain sets X_N with almost perfect separation and covering properties. Suppose s > 0, and $X_N = \{x_1, \ldots, x_N\}$ is a set that minimizes

$$\min\sum_i \sum_{j\neq i} \frac{1}{|x_i - x_j|^s},$$

where the minimum is taken over all N-point sets. Here is what happens on \mathbb{S}^2 :

• If 0 < s < 2 or s > 2 then $\delta(X_N) \ge \frac{c_1}{\sqrt{N}}$ (Damelin, Dragnev, Kuijlaars, Maymeskul, Saff, Sun); We briefly explain how to obtain sets X_N with almost perfect separation and covering properties. Suppose s > 0, and $X_N = \{x_1, \ldots, x_N\}$ is a set that minimizes

$$\min\sum_i \sum_{j\neq i} \frac{1}{|x_i - x_j|^s},$$

where the minimum is taken over all N-point sets. Here is what happens on \mathbb{S}^2 :

- · If 0 < s < 2 or s > 2 then $\delta(X_N) \ge \frac{c_1}{\sqrt{N}}$ (Damelin, Dragnev, Kuijlaars, Maymeskul, Saff, Sun);
- · If s = 1 or s > 2 then $\rho(X_N) \leq \frac{c_2}{\sqrt{N}}$ (Dahlberg, Damelin, Maymeskul).

We consider S³. For a positive integer n, denote

$$\mathcal{E}(n) := \frac{1}{\sqrt{n}} \{ x_1^2 + x_2^2 + x_3^2 + x_4^2 = n : x_1, x_2, x_3, x_4 \in \mathbb{Z} \}.$$

The points in $\mathcal{E}(n)$ cover \mathbb{S}^3 badly: if $N := \#\mathcal{E}(n)$, then

 $\rho(\mathcal{E}(\mathsf{n})) \geqslant \mathsf{N}^{-1/4+\varepsilon}.$

We consider S³. For a positive integer n, denote

$$\mathcal{E}(n) := \frac{1}{\sqrt{n}} \{ x_1^2 + x_2^2 + x_3^2 + x_4^2 = n \colon x_1, x_2, x_3, x_4 \in \mathbb{Z} \}.$$

The points in $\mathcal{E}(n)$ cover \mathbb{S}^3 badly: if $N := \#\mathcal{E}(n)$, then

$$\rho(\mathcal{E}(\mathbf{n})) \geqslant \mathbf{N}^{-1/4+\varepsilon}$$

In the same paper Bourgain, Rudnick and Sarnak show that

$$\mathbb{E}\rho(\mathsf{X}_{\mathsf{N}}) \leqslant \mathsf{N}^{-1/3+\varepsilon},$$

where $X_N = \{x_1, \dots, x_N\}$ are uniformly distributed over \mathbb{S}^3 .

Consider a compact set \mathcal{X} , equipped with a probability measure μ . What if we distribute the points x_1, \ldots, x_N randomly and independently according to μ ?

Best possible	E	Reference

Best possible | \mathbb{E} | Reference

 $\delta(X_N)$

E	Best possible	\mathbb{E}	Reference
$\delta(X_N)$	$\frac{c_1}{\sqrt{N}}$		

	Best possible	$\mathbb E$	Reference
$\delta(X_N)$	$\frac{c_1}{\sqrt{N}}$	$\frac{C_1}{N}$	Brauchart, Dick, Saff, Sloan, Wang, Wommersley

 $D(X_N)$

	Best possible	E	Reference
$\delta(X_N)$	$\frac{C_1}{\sqrt{N}}$	$\frac{C_1}{N}$	Brauchart, Dick, Saff, Sloan, Wang, Wommersley
$D(X_N)$	$\leqslant C_2 \frac{\sqrt{\log N}}{N^{3/4}}$		

	Best possible	E	Reference
$\delta(X_N)$	$\frac{C_1}{\sqrt{N}}$	$\left \begin{array}{c} \frac{C_1}{N} \end{array} \right $	Brauchart, Dick, Saff, Sloan, Wang, Wommersley
D(X _N)	$\leqslant C_2 \frac{\sqrt{\log N}}{N^{3/4}}$	$\frac{C_2}{\sqrt{N}}$	Aistleitner, Brauchart, Dick
$\rho(X_N)$			

	Best possible	E	Reference
$\delta(X_N)$	$\frac{c_1}{\sqrt{N}}$	$\frac{C_1}{N}$	Brauchart, Dick, Saff, Sloan, Wang, Wommersley
D(X _N)	$\leqslant C_2 \frac{\sqrt{\log N}}{N^{3/4}}$	$\frac{C_2}{\sqrt{N}}$	Aistleitner, Brauchart, Dick
$\rho(X_N)$	$\frac{C_3}{\sqrt{N}}$		

	Best possible	$\mathbb E$	Reference
$\delta(X_N)$	$\frac{c_1}{\sqrt{N}}$	$\frac{C_1}{N}$	Brauchart, Dick, Saff, Sloan, Wang, Wommersley
$D(X_N)$	$\leqslant C_2 \frac{\sqrt{\log N}}{N^{3/4}}$	$\frac{C_2}{\sqrt{N}}$	Aistleitner, Brauchart, Dick
$\rho(X_N)$	$\frac{C_3}{\sqrt{N}}$	$\leqslant C_3N^{-1/2+\varepsilon}$	Bourgain, Rudnick, Sarnak

	Best possible	E	Reference
$\delta(X_N)$	$\frac{C_1}{\sqrt{N}}$	$\frac{C_1}{N}$	Brauchart, Dick, Saff, Sloan, Wang, Wommersley
D(X _N)	$\leqslant C_2 \frac{\sqrt{\log N}}{N^{3/4}}$	$\frac{C_2}{\sqrt{N}}$	Aistleitner, Brauchart, Dick
$\rho(X_N)$	$\frac{C_3}{\sqrt{N}}$	$C_3 \frac{\sqrt{\log N}}{\sqrt{N}}$	Saff, A.R.

Suppose s is a positive integer, and S is a compact closed C^{1,1} s-dimensional manifold. Then

Suppose s is a positive integer, and S is a compact closed C^{1,1} s-dimensional manifold. Then

$$\lim_{N\to\infty} \mathbb{E}\rho(X_N) \cdot \left[\frac{N}{\log N}\right]^{1/s} =$$

MAIN THEOREM FOR MANIFOLDS

Suppose s is a positive integer, and S is a compact closed C^{1,1} s-dimensional manifold. Then

$$\lim_{N\to\infty} \mathbb{E}\rho(X_N) \cdot \left[\frac{N}{\log N}\right]^{1/s} = \left(\frac{m_s(S)}{\omega_s}\right)^{1/s},$$

where $m_{\rm s}$ is the s-dimensional Lebesgue measure, and $\omega_{\rm s}$ is the measure of the s-dimensional unit ball.

Suppose s is a positive integer, and S is a compact closed C^{1,1} s-dimensional manifold. Then

$$\lim_{N\to\infty} \mathbb{E}\rho(X_N) \cdot \left[\frac{N}{\log N}\right]^{1/s} = \left(\frac{m_s(S)}{\omega_s}\right)^{1/s},$$

where $m_{\rm s}$ is the s-dimensional Lebesgue measure, and $\omega_{\rm s}$ is the measure of the s-dimensional unit ball.

The proof relies on the following uniform limit:

$$r^{-s}m_s(B(x,r)\cap S) \rightrightarrows \omega_s, r \to 0, x \in S.$$

(The s-density exists at every point of K, and the limit is uniform.)

Suppose s is a positive integer, and S is a compact closed C^{1,1} s-dimensional manifold. Then

$$\lim_{N\to\infty} \mathbb{E}\rho(X_N) \cdot \left[\frac{N}{\log N}\right]^{1/s} = \left(\frac{m_s(S)}{\omega_s}\right)^{1/s},$$

where $m_{\rm s}$ is the s-dimensional Lebesgue measure, and $\omega_{\rm s}$ is the measure of the s-dimensional unit ball.

The proof relies on the following uniform limit:

$$r^{-s}m_s(B(x,r)\cap S) \rightrightarrows \omega_s, r \to 0, x \in S.$$

(The s-density exists at every point of K, and the limit is uniform.)

Example

The above limit is clearly uniform for a sphere $\mathbb{S}^d.$ Thus, the constant we get is

$$\left(\frac{(d+1)\omega_{d+1}}{\omega_d}\right)^{1/d}$$

BALL, CUBE

To achieve the constant $\left(\frac{m_s(S)}{\omega_s}\right)^{1/s}$, it was essential (and sufficient!) to have $r^{-s}m_s(B(x,r) \cap S) \Rightarrow \omega_s$ as $r \to 0$.

BALL, CUBE

To achieve the constant $\left(\frac{m_s(S)}{\omega_s}\right)^{1/s}$, it was essential (and sufficient!) to have $r^{-s}m_s(B(x,r)\cap S) \Longrightarrow \omega_s$ as $r \to 0$. An easy example $S = S^2 \cup \{(2015, 2015, 2015)\}$ shows that if this limit is not equal to ω_s even at one single point, then the theorem might fail.

BALL, CUBE

To achieve the constant $\left(\frac{m_s(S)}{\omega_s}\right)^{1/s}$, it was essential (and sufficient!) to have $r^{-s}m_s(B(x,r)\cap S) \Longrightarrow \omega_s$ as $r \to 0$. An easy example $S = \mathbb{S}^2 \cup \{(2015, 2015, 2015)\}$ shows that if this limit is not equal to ω_s even at one single point, then the theorem might fail.

More natural examples of such a situation is a unit ball $B(0,1) \subset \mathbb{R}^d$ and a unit cube $[0,1]^d \subset \mathbb{R}^d$. While at almost every point x it holds that $r^{-d}m_d(B(x,r) \cap K) \to \omega_d$, it is not uniform, and on the boundary the limit is not equal to ω_d .

BALL, CUBE

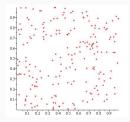
To achieve the constant $\left(\frac{m_s(S)}{\omega_s}\right)^{1/s}$, it was essential (and sufficient!) to have $r^{-s}m_s(B(x,r) \cap S) \Longrightarrow \omega_s$ as $r \to 0$. An easy example $S = S^2 \cup \{(2015, 2015, 2015)\}$ shows that if this limit is not equal to ω_s even at one single point, then the theorem might fail.

More natural examples of such a situation is a unit ball $B(0,1) \subset \mathbb{R}^d$ and a unit cube $[0,1]^d \subset \mathbb{R}^d$. While at almost every point x it holds that $r^{-d}m_d(B(x,r) \cap K) \to \omega_d$, it is not uniform, and on the boundary the limit is not equal to ω_d . Surprisingly, this makes a difference, yielding the following.

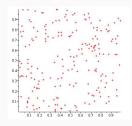
Theorem

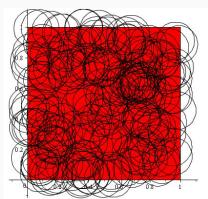
$$\begin{split} \lim_{N \to \infty} \mathbb{E}\rho(X_N; B(0, 1)) \cdot \left[\frac{N}{\log N}\right]^{1/d} &= \left(\frac{2(d-1)}{d}\right)^{1/d} \text{ compare to 1;} \\ \lim_{N \to \infty} \mathbb{E}\rho(X_N; [0, 1]^d) \cdot \left[\frac{N}{\log N}\right]^{1/d} &= \left(\frac{2^{d-1}}{d\omega_d}\right)^{1/d} \text{ compare to } (1/\omega_d)^{1/d}. \end{split}$$

PICTURES

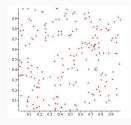


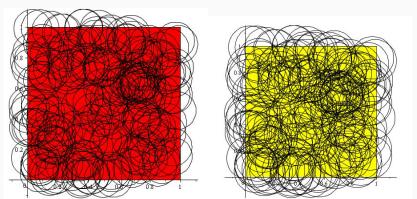
PICTURES





PICTURES





12

Consider the middle 1/3 cantor set C equipped with the Hausdorff measure $\mu := \mathcal{H}_{\log 2/\log 3}$. It is an exercise that

Consider the middle 1/3 cantor set C equipped with the Hausdorff measure $\mu := \mathcal{H}_{\log 2/\log 3}$. It is an exercise that

 \cdot The measure μ is regular; i.e., for s = log 2/log 3 we have

 $cr^{s} < \mu(B(x, r)) < Cr^{s}, x \in C, r < 1/2;$

Consider the middle 1/3 cantor set C equipped with the Hausdorff measure $\mu := \mathcal{H}_{\log 2/\log 3}$. It is an exercise that

· The measure μ is regular; i.e., for s = log 2/log 3 we have

$$cr^{s} < \mu(B(x, r)) < Cr^{s}, x \in C, r < 1/2;$$

• The limit $\lim_{r\to 0} r^{-s}\mu(B(x, r))$ does not exist for μ -almost every $x \in C$.

We can handle this case

Consider the middle 1/3 cantor set C equipped with the Hausdorff measure $\mu := \mathcal{H}_{\log 2/\log 3}$. It is an exercise that

· The measure μ is regular; i.e., for s = log 2/log 3 we have

$$cr^{s} < \mu(B(x, r)) < Cr^{s}, x \in C, r < 1/2;$$

• The limit $\lim_{r\to 0} r^{-s}\mu(B(x, r))$ does not exist for μ -almost every $x \in C$.

We can handle this case with a two-sided estimate instead of the asymptotic behavior.

Consider the middle 1/3 cantor set C equipped with the Hausdorff measure $\mu := \mathcal{H}_{\log 2/\log 3}$. It is an exercise that

· The measure μ is regular; i.e., for s = log 2/log 3 we have

$$cr^{s} < \mu(B(x, r)) < Cr^{s}, x \in C, r < 1/2;$$

• The limit $\lim_{r\to 0} r^{-s}\mu(B(x, r))$ does not exist for μ -almost every $x \in C$.

We can handle this case with a two-sided estimate instead of the asymptotic behavior. That is,

$$\mathbb{E}\rho(X_N) \asymp \left(\frac{\log N}{N}\right)^{1/s}$$

Suppose ${\mathcal X}$ is a compact metric space, equipped with a probability Borel measure $\mu.$

· $\lim_{r\to 0} \Phi(r) = 0;$

METRIC SPACE THEOREM

Suppose \mathcal{X} is a compact metric space, equipped with a probability Borel measure μ . We assume that there exists a positive, strictly increasing function $\Phi \colon \mathbb{R} \to \mathbb{R}$ with following properties:

- · $\lim_{r\to 0} \Phi(r) = 0;$
- · Φ is doubling; i.e., $\Phi(2r) \leqslant C\Phi(r)$ for sufficiently small values of r;

- · $\lim_{r\to 0} \Phi(r) = 0;$
- · Φ is doubling; i.e., $\Phi(2r) \leqslant C\Phi(r)$ for sufficiently small values of r;
- \cdot Φ controls μ ; i.e.,

 $c\Phi(r) \leqslant \mu(B(x,r)) \leqslant C\Phi(r), r \approx 0, x \in \mathcal{X}.$

Then

- · $\lim_{r\to 0} \Phi(r) = 0;$
- · Φ is doubling; i.e., $\Phi(2r) \leqslant C\Phi(r)$ for sufficiently small values of r;
- \cdot Φ controls μ ; i.e.,

 $c\Phi(r) \leqslant \mu(B(x,r)) \leqslant C\Phi(r), r \approx 0, x \in \mathcal{X}.$

Then

$$\mathbb{P}\left[c_{1}\Phi^{-1}\left(\frac{\log N}{N}\right)\leqslant\rho(X_{N})\leqslant c_{2}\Phi^{-1}\left(\frac{\log N}{N}\right)\right]\rightarrow1,\ N\rightarrow\infty;$$

- · $\lim_{r\to 0} \Phi(r) = 0;$
- · Φ is doubling; i.e., $\Phi(2r) \leqslant C\Phi(r)$ for sufficiently small values of r;
- \cdot Φ controls μ ; i.e.,

 $c\Phi(r) \leqslant \mu(B(x,r)) \leqslant C\Phi(r), r \approx 0, x \in \mathcal{X}.$

Then

$$\begin{split} \mathbb{P}\left[c_1\Phi^{-1}\left(\frac{\log N}{N}\right) \leqslant \rho(X_N) \leqslant c_2\Phi^{-1}\left(\frac{\log N}{N}\right)\right] \to 1, \ N \to \infty; \\ \mathbb{E}\rho(X_N) \asymp \Phi^{-1}\left(\frac{\log N}{N}\right). \end{split}$$

A set X_N is an ε -covering of \mathcal{X} , if any point of \mathcal{X} can be approximated by a point of X_N up to ε . On a smooth s-dimensional manifold the best ε -covering will have cardinality $\frac{c}{\varepsilon^5}$. A set X_N is an ε -covering of \mathcal{X} , if any point of \mathcal{X} can be approximated by a point of X_N up to ε . On a smooth s-dimensional manifold the best ε -covering will have cardinality $\frac{c}{\varepsilon^s}$. The consequence of our theorems is: A set X_N is an ε -covering of \mathcal{X} , if any point of \mathcal{X} can be approximated by a point of X_N up to ε . On a smooth s-dimensional manifold the best ε -covering will have cardinality $\frac{c}{\varepsilon^s}$. The consequence of our theorems is:

Random ε -covering

Suppose N $\approx \varepsilon^{-s} \log(1/\varepsilon)$. Then, with high probability, a random set X_N of N points is an ε -covering of a smooth s-dimensional manifold K.

Thank you!