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The restriction estimate (extension estimate)

Let µ be a positive Borel measure supported on a compact set in Rd . We
consider the estimate ∥∥∥f̂dµ∥∥∥

Lp(Rd )
≲p,q ∥f ∥Lq(µ)

where

f̂dµ(ξ) :=

∫
f (x)e2πixξdµ(x).

A ≲p,q B means A ≤ Cp,qB where the constant Cp,q only depends on p
and q.
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≲p,q ∥f ∥Lq(µ)

where

f̂dµ(ξ) :=

∫
f (x)e2πixξdµ(x).

If µ is a surface measure on a smooth manifold (for example,
paraboloid, cone or moment curve), the estimate is related to
dispersive PDEs.

In this talk, we are interested in when µ is supported on a fractal set
(for example, Cantor set).
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The restriction estimate (extension estimate)

We are interested when q = 2.∥∥∥f̂dµ∥∥∥
Lp(Rd )

≲p ∥f ∥L2(µ) (1)

There is but two serious function space, and they are L2 and L1

(or L2 and L∞).

We have trivial estimate∥∥∥f̂dµ∥∥∥
L∞(Rd )

≲ ∥f ∥L1(µ)

and we can interpolate with (1)
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The restriction estimate (extension estimate)

Stein-Tomas theorem

Let µ be a surface measure on the d − 1 dimensional paraboloid
Pd−1 := {(x ′, |x ′|2) : x ′ ∈ [0, 1]d−1}. For p ≥ 2(d+1)

d−1 ,∥∥∥f̂dµ∥∥∥
Lp(Rd )

≲p ∥f ∥L2(µ)

and the range of p is optimal.

The fact that the paraboloid has positive Gaussian curvature played a key
role in the proof.
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The restriction estimate

∥∥∥f̂dµ∥∥∥
Lp(Rd )

≲p ∥f ∥L2(µ)

If µ is a surface measure on a smooth manifold (for example,
paraboloid, cone or moment curve), we can use its geometric
properties like dimension, smoothness and curvature.

However, if µ is supported on a fractal set (for example, Cantor set),
we cannot use such geometric properties.
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The restriction estimate

Theorem (Mockenhaupt, 2000, Mitsis, 2002, Bak-Seeger, 2011)

Let µ be a positive Borel measure on Rd . Assume that there exists
a, b ∈ (0, d) such that

µ(B(x , r)) ≲ ra ∀x ∈ Rd , r > 0

|µ̂(ξ)| ≲ (1 + |ξ|)−b/2 ∀ξ ∈ Rd .

For p ≥ (4d − 4a + 2b)/b,∥∥∥f̂dµ∥∥∥
Lp(Rd )

≲p ∥f ∥L2(µ).

If µ is a surface measure on Pd−1, then a = b = d − 1. Thus,
p ≥ 2(d + 1)/(d − 1).

Is the range of p optimal?
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Optimality of the restriction theorem

For fixed a and b, there could exist many measures µ which satisfy

Regularity : µ(B(x , r)) ≲ ra ∀x ∈ Rd , r > 0

Fourier Decay : |µ̂(ξ)| ≲ (1 + |ξ|)−b/2 ∀ξ ∈ Rd

For each p < (4d − 4a + 2b)/b, we want to construct a measure µ such
that µ satisfies the regularity and Fourier decay, but∥∥∥f̂ µ∥∥∥

Lp(Rd )
≲p ∥f ∥L2(µ)

fails.
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Optimality of the restriction theorem

 Laba and Hambrook (2013) and Chen (2016) : 0 ≤ b ≤ a < d = 1.

 Laba and Hambrook (2016): d − 1 ≤ b ≤ a < d .

All these results are based on probabilistic constructions.

Theorem (Fraser,Hambrook and R., 2023+)

The range of p in the Mockenhaupt-Mitsis-Bak-Seeger restrictioin theorem
is optimal if

0 < a, b < d = 1 b ≤ 2a.

Our construction is deterministic.

Actually, showed the optimality for all possible a, b when d = 1, since
b > 2a cannot happen. It was proved by Mitsis (2002).
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 Laba and Hambrook (2013) and Chen (2016) : 0 ≤ b ≤ a < d = 1.

 Laba and Hambrook (2016): d − 1 ≤ b ≤ a < d .

All these results are based on probabilistic constructions.

Theorem (Fraser,Hambrook and R., 2023+)

The range of p in the Mockenhaupt-Mitsis-Bak-Seeger restrictioin theorem
is optimal if

0 < a, b < d = 1 b ≤ 2a.

Li and Liu (2024+) : another deterministic construction with other
additional properties
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Beyond the range

For all measures, is the range of p optimal? No

Regularity : µ(B(x , r)) ≲ ra ∀x ∈ Rd , r > 0

Fourier Decay : |µ̂(ξ)| ≲ (1 + |ξ|)−b/2 ∀ξ ∈ Rd

We want to construct a measure which satisfies the regularity and Fourier
decay, but ∥∥∥f̂dµ∥∥∥

Lp(Rd )
≲ ∥f ∥L2(µ)

holds even when p < (4d − 4a + 2b)/b.
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Beyond the range

Is the range of p optimal for all measures?
If µ is a measure supported on a set of Hausdorff dimension α < d ,∥∥∥f̂dµ∥∥∥

Lp(Rd )
≲ ∥f ∥L2(µ) only when p ≥ 2d

α
.

It is well known in geometric measure theory that

0 ≤ a, b ≤ α.

If α < d , we have the following.
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Beyond the range

Is there a measure µ supported on a set of Hausdorff dimension α such
that ∥∥∥f̂dµ∥∥∥

Lp(Rd )
≲p ∥f ∥L2(µ) when p =

2d

α
? (2)

Chen and Seeger(2017) : α = d/k and k is an integer.

Shmerkin and Suomala(2017) : d = 1 and 0 < α < 1/2.

 Laba and Wang(2018) : All α and d in nearly-optimal sense. In other
words, (2) holds when p > 2d/α.

There is no explicit example known yet.
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Fractal measure on a manifold

What if a fractal measure µ is supported on a smooth manifold?

The paraboloid has positive curvature at any point. It leads to∥∥∥f̂dµ∥∥∥
Lp(Rd )

≲p ∥f ∥L2(µ) (3)

for p ≥ 2(d + 1)/(d − 1).

How will the curvature affect to fractal sets?

Can we construct a measure µ supported on the paraboloid such
that (3) holds even when p < (4d − 4a + 2b)/b?
If it is possible, how small can p be?
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Fractal measure on a manifold

What if a fractal measure µ is supported on a smooth manifold?

(R. 2023) For 0 < α < 1, there exists a measure ν supported on the
parabola P := {(x , x2) : x ∈ [0, 1]} which satisfies the following:

dimH(supp(ν)) = α

For any p > 6/α, we have∥∥∥f̂dν∥∥∥
Lp(Rd )

≲p ∥f ∥L2(ν).

If p < 6/α, the estimate above fails.
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Summary

Let µ be a measure supported on a set of Hausdorff dimension α.

µ(B(x , r)) ≲ ra ∀x ∈ Rd , r > 0

|µ̂(ξ)| ≲ (1 + |ξ|)−b/2 ∀ξ ∈ Rd .

Let us define the critical exponent of µ by

pc(µ) = inf{p :
∥∥∥f̂dµ∥∥∥

Lp(Rd )
≲p ∥f ∥L2(µ) holds}.

2d

α
≤ pc(µ) ≤ 4d − 4a + 2b

b
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Summary

pc(µ) := inf{p :
∥∥∥f̂dµ∥∥∥

Lp(Rd )
≲p ∥f ∥L2(µ) holds}.

We have examples such that

pc(µ) = 4d−4a+2b
b

pc(µ) = 2d
α

2d
α < pc(µ) < 4d−4a+2b

b

Hausdorff dimension, regularity and Fourier decay are not enough to
determine pc(µ).
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Summary

pc(µ) := inf{p :
∥∥∥f̂dµ∥∥∥

Lp(Rd )
≲p ∥f ∥L2(µ) holds}.

Hausdorff dimension, regularity and Fourier decay are not enough to
determine pc(µ).

Q: What are the determining factors of the optimal range of p?

If we have explicit examples, we can hope to see a pattern.
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Result

Theorem (Fraser,Hambrook and R., 2023+)

The range of p in the Mockenhaupt-Mitsis-Bak-Seeger restrictioin theorem
is optimal if

0 < a, b < d = 1 b ≤ 2a.

For each p < (4d − 4a + 2b)/b, we want to construct a measure µ such
that µ satisfies

Regularity : µ(B(x , r)) ≲ ra ∀x ∈ Rd , r > 0

Fourier Decay : |µ̂(ξ)| ≲ (1 + |ξ|)−b/2 ∀ξ ∈ Rd ,

but does not satisfies ∥∥∥f̂ µ∥∥∥
Lp(Rd )

≲p ∥f ∥L2(µ).
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Result

Theorem (Fraser,Hambrook and R., 2023+)

The range of p in the Mockenhaupt-Mitsis-Bak-Seeger restrictioin theorem
is optimal if

0 < a, b < d = 1 b ≤ 2a.

Main tools

Well approximable numbers

A cantor set determined by arithmetic progressions
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Idea of the proof

Laba and Hambrook (2013) and Chen (2016) used two types of Cantor
sets:
A random Cantor set CR and a Cantor set CD determined by
arithmetic progressions.
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Idea of the proof

First, they constructed a measure µ on CR such that, for any ϵ > 0,

µ(I ) ≲ϵ |I |a−ϵ |µ̂(ξ)| ≲ϵ (1 + |ξ|)−a/2+ϵ

where I is an interval in R.

They modified this measure so that the new measure µ is supported
on CR ∪ CD and

µ(I ) ≲ϵ |I |a−ϵ |µ̂(ξ)| ≲ϵ (1 + |ξ|)−b/2+ϵ

for b ≤ a.
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Idea of the proof

Consider a sequence functions {fk}k∈N supported on CD at the kth-scale.

lim
k→∞

∥∥∥f̂kdµ∥∥∥
Lp(Rd )

∥fk∥L2(µ)
= ∞, if p <

4d − 4a + 2b

b

Thus, the range of p is optimal.
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Idea of the proof

A random Cantor set CR and a Cantor set CD determined by
arithmetic progressions.

↓

The set of α-well-approximable numbers E (α) and a Cantor set
C (β) determined by arithmetic progressions.

To extend the range from b ≤ a to b ≤ 2a, we gave a different
weight on C (β) according to the parameter β.
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Set of well-approximable numbers

For α > 0, we define the set of α-well-approximable numbers by

E (α) := {x ∈ R : |x − r/q| ≤ |q|−(2+α) for infinitely many (q, r) ∈ Z2}

The set E (α) arise from number theory; Major arc in circle method.

Kaufman (1981) proved that E (α) is a 2
2+α -dimensional Salem set.

There exists a measure µ on E (α) such that

dimH(supp(µ)) =
2

2 + α
and |µ̂(ξ)| ≲ϵ (1 + |ξ|)−

1
2+α

+ϵ

Being a Salem set does not guarantee that µ(I ) ≲ϵ |I |
2

2+α
−ϵ.

But we constructed a measure which also satisfies the regularity.
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Regularity and Fourier decay

If β = 0, for any ϵ > 0,

µ(I ) ≲ϵ |I |
2

2+α
−ϵ |µ̂(ξ)| ≲ (1 + |ξ|)−

1
2+α

+ϵ

If 0 < β < 1, the length of the arithmetic sequence is long, so that
it lowers the exponent in the Fourier decay.

µ(I ) ≲ϵ |I |
2

2+α
−ϵ |µ̂(ξ)| ≲ϵ (1 + |ξ|)−

1−β
2+α

+ϵ

If −1 < β < 0, the weight on the Cantor set C (β) is large, so
that it lowers the exponent in the regularity.

µ(I ) ≲ϵ |I |
2+β
2+α

−ϵ |µ̂(ξ)| ≲ϵ (1 + |ξ|)−
1

2+α
+ϵ
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a: Regularity

b: Fourier decay
b = 2a

1

b = a

β = 0

β → 1

β → −1

Figure

If we ignore ϵ in the exponents, (a, b) = ( 2
2+α ,

2
2+α) when β = 0.

(a, b) → ( 2
2+α , 0) as β → 1 and (a, b) → ( 1

2+α ,
2

2+α) as β → −1.
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Knapp’s example

Knapp’s example gives an example such that L2-Lp estimate fails when µ
is supported on a smooth manifold.

∥∥∥f̂Idµ∥∥∥
Lp(R2)

≳ R−1/2+3/2p and ∥fI∥L2(µ) ≈ R−1/4.∥∥∥f̂dµ∥∥∥
Lp(Rd )

≲p ∥f ∥L2(µ) fails when p < 6.
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Knapp’s example

In Knapp’s example, we consider only one component.

In fractal sets, we consider several components ordered in a certain
way.

C (β): Cantor set determined by arithmectic progressions.
We consider a smooth function fk supported C (β) at the kth scale.
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Failure of the L2-Lp estimate

We consider a smooth function fk supported C (β) at the kth scale.

lim
k→∞

∥∥∥f̂kdµ∥∥∥
Lp(Rd )

∥fk∥L2(µ)
= ∞ whenever

{
p < 2 (1+α−β)

1−β if 0 ≤ β < 1

p < 2(1 + α− β) if − 1 < β < 0

We have

µ(I ) ≲ϵ |I |
2

2+α
−ϵ and |µ̂(ξ)| ≲ϵ (1 + |ξ|)−

1−β
2+α

+ϵ if 0 < β < 1

µ(I ) ≲ϵ |I |
2+β
2+α

−ϵ and |µ̂(ξ)| ≲ϵ (1 + |ξ|)−
1

2+α
+ϵ if − 1 < β < 0

a : exponent in the regularity / b : exponent in the Fourier decay

∥∥∥f̂dµ∥∥∥
Lp(Rd )

≲p ∥f ∥L2(µ) fails when p <
4d − 4a + 2b

b
.
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Future direction

Theorem (Fraser,Hambrook and R., 2023+)

The range of p in the Mockenhaupt-Mitsis-Bak-Seeger restrictioin theorem
is optimal if

0 < a, b < d = 1 b ≤ 2a.

What about higher dimension?

 Laba and Hambrook (2016): d − 1 ≤ b ≤ a < d .

We used the set of well-approximable numbers, since it is an explicit
Salem set in R.

Explicit Salem sets in higher dimensions
Hambrook (2017): Explicit Salem sets in R2.
Fraser and Hambrook (2023): Explicit Salem sets in Rd .

Donggeun Ryou Fourier restriction and well approximable numbers October 13, 2024 35 / 39



Future direction

Theorem (Fraser,Hambrook and R., 2023+)

The range of p in the Mockenhaupt-Mitsis-Bak-Seeger restrictioin theorem
is optimal if

0 < a, b < d = 1 b ≤ 2a.

What about higher dimension?

 Laba and Hambrook (2016): d − 1 ≤ b ≤ a < d .

We used the set of well-approximable numbers, since it is an explicit
Salem set in R.

Explicit Salem sets in higher dimensions
Hambrook (2017): Explicit Salem sets in R2.
Fraser and Hambrook (2023): Explicit Salem sets in Rd .

Donggeun Ryou Fourier restriction and well approximable numbers October 13, 2024 35 / 39



Future direction

Theorem (Fraser,Hambrook and R., 2023+)

The range of p in the Mockenhaupt-Mitsis-Bak-Seeger restrictioin theorem
is optimal if

0 < a, b < d = 1 b ≤ 2a.

What about higher dimension?

 Laba and Hambrook (2016): d − 1 ≤ b ≤ a < d .

We used the set of well-approximable numbers, since it is an explicit
Salem set in R.

Explicit Salem sets in higher dimensions
Hambrook (2017): Explicit Salem sets in R2.
Fraser and Hambrook (2023): Explicit Salem sets in Rd .

Donggeun Ryou Fourier restriction and well approximable numbers October 13, 2024 35 / 39



Future direction

Theorem (Fraser,Hambrook and R., 2023+)

The range of p in the Mockenhaupt-Mitsis-Bak-Seeger restrictioin theorem
is optimal if

0 < a, b < d = 1 b ≤ 2a.

What about higher dimension?

 Laba and Hambrook (2016): d − 1 ≤ b ≤ a < d .

We used the set of well-approximable numbers, since it is an explicit
Salem set in R.

Explicit Salem sets in higher dimensions
Hambrook (2017): Explicit Salem sets in R2.
Fraser and Hambrook (2023): Explicit Salem sets in Rd .

Donggeun Ryou Fourier restriction and well approximable numbers October 13, 2024 35 / 39



Algebraic Number Theory

For α > 0, we define the set of α-well-approximable numbers by

E (α) := {x ∈ R : |x − r/q| ≤ |q|−(2+α) for infinitely many (q, r) ∈ Z2}

Let | · | be the Euclidean norm. For τ > 1,

E (τ)

= {x ∈ Rd : |x − r/q| ≤ |q|−(τ+1) for infinitely many (q, r) ∈ Zd × Zd}

How can we define
(1, 1)

(1,−1)
?

(1, 1)

(1,−1)
≃ 1 + i

1 − i
= 0 + i ≃ (0, 1)
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Algebraic Number Theory

K : a d dimensional field extension of Q.

Zk : a ring of integers of K .

B = {w1, · · · ,wd}: an integral basis for K .

Zk ≃ Zd K ≃ Qd (q1, · · · , qd) ≃ q1w1 + · · · + qdwd

r

q
≃ r1w1 + · · · + rdwd

q1w1 + · · · + qdwd

.

If K = Q[i ] := {q1 + q2i : q1, q2 ∈ Q}, then Zk = Z[i ],B = {1, i}.

(1, 1)

(1,−1)
≃ 1 + i

1 − i
= 0 + i ≃ (0, 1)
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Salem sets in higher dimension

Let | · | be the Euclidean norm.

E (K ,B, τ)

= {x ∈ Rd :

∣∣∣∣x − r

q

∣∣∣∣ ≤ |q|−(τ+1) for infinitely many (q, r) ∈ Zd × Zd}

For τ > 1, they constructed a measure µ on E (K ,B, τ) such that

dimH(supp(µ)) ≤ 2d

1 + τ
|µ̂(ξ)| ≲ϵ |ξ|−

d
1+τ

+ϵ

Can we repeat a similar argument in this setting?
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Questions

Thank you!
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