Fourier restriction and well approximable numbers

Donggeun Ryou

Indiana University, Bloomington Joint work with Robet Fraser and Kyle Hambrook

Midwestern Workshop on Asymptotic Analysis October 13, 2024

Donggeun Ryou

Fourier restriction and well approximable num

글▶ 글

Let μ be a positive Borel measure supported on a compact set in \mathbb{R}^d . We consider the estimate

$$\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)}\lesssim_{p,q}\|f\|_{L^q(\mu)}$$

where

$$\widehat{fd\mu}(\xi) := \int f(x) e^{2\pi i x \xi} d\mu(x).$$

 $A \lesssim_{p,q} B$ means $A \le C_{p,q}B$ where the constant $C_{p,q}$ only depends on p and q.

Let μ be a positive Borel measure supported on a compact set in \mathbb{R}^d . We consider the estimate

$$\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)}\lesssim_{p,q}\|f\|_{L^q(\mu)}$$

where

$$\widehat{fd\mu}(\xi) := \int f(x) e^{2\pi i x \xi} d\mu(x).$$

 If μ is a surface measure on a smooth manifold (for example, paraboloid, cone or moment curve), the estimate is related to dispersive PDEs. Let μ be a positive Borel measure supported on a compact set in \mathbb{R}^d . We consider the estimate

$$\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)}\lesssim_{p,q}\|f\|_{L^q(\mu)}$$

where

$$\widehat{fd\mu}(\xi) := \int f(x) e^{2\pi i x \xi} d\mu(x).$$

- If μ is a surface measure on a smooth manifold (for example, paraboloid, cone or moment curve), the estimate is related to dispersive PDEs.
- In this talk, we are interested in when μ is supported on a fractal set (for example, Cantor set).

The restriction estimate (extension estimate)

• We are interested when q = 2.

$$\left\|\widehat{fd\mu}\right\|_{L^{p}(\mathbb{R}^{d})} \lesssim_{p} \|f\|_{L^{2}(\mu)} \tag{1}$$

э

The restriction estimate (extension estimate)

• We are interested when q = 2.

$$\left\|\widehat{fd\mu}\right\|_{L^{p}(\mathbb{R}^{d})} \lesssim_{p} \|f\|_{L^{2}(\mu)}$$

$$(1)$$

• There is but two serious function space, and they are L^2 and L^1 (or L^2 and L^{∞}).

The restriction estimate (extension estimate)

• We are interested when q = 2.

$$\left\|\widehat{fd\mu}\right\|_{L^{p}(\mathbb{R}^{d})} \lesssim_{p} \|f\|_{L^{2}(\mu)}$$

$$(1)$$

- There is but two serious function space, and they are L^2 and L^1 (or L^2 and L^{∞}).
- We have trivial estimate

$$\left\|\widehat{\mathit{fd}\mu}\right\|_{L^\infty(\mathbb{R}^d)}\lesssim \|f\|_{L^1(\mu)}$$

and we can interpolate with (1)

Stein-Tomas theorem

Let μ be a surface measure on the d-1 dimensional paraboloid $\mathbb{P}^{d-1} := \{(x', |x'|^2) : x' \in [0, 1]^{d-1}\}.$ For $p \ge \frac{2(d+1)}{d-1}$,

$$\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_p \|f\|_{L^2(\mu)}$$

and the range of p is optimal.

The fact that the paraboloid has positive Gaussian curvature played a key role in the proof.

$$\left\|\widehat{fd\mu}\right\|_{L^{p}(\mathbb{R}^{d})} \lesssim_{p} \|f\|_{L^{2}(\mu)}$$

• If μ is a surface measure on a smooth manifold (for example, paraboloid, cone or moment curve), we can use its geometric properties like dimension, smoothness and curvature.

$$\left\|\widehat{fd\mu}\right\|_{L^{p}(\mathbb{R}^{d})} \lesssim_{p} \|f\|_{L^{2}(\mu)}$$

- If μ is a surface measure on a smooth manifold (for example, paraboloid, cone or moment curve), we can use its geometric properties like dimension, smoothness and curvature.
- However, if μ is supported on a fractal set (for example, Cantor set), we cannot use such geometric properties.

Theorem (Mockenhaupt, 2000, Mitsis, 2002, Bak-Seeger, 2011)

Let μ be a positive Borel measure on \mathbb{R}^d . Assume that there exists $a, b \in (0, d)$ such that

$$\mu(B(x,r)) \lesssim r^a \qquad \forall x \in \mathbb{R}^d, r > 0$$

$$|\widehat{\mu}(\xi)| \lesssim (1+|\xi|)^{-b/2} \qquad orall \xi \in \mathbb{R}^d.$$

For $p \ge (4d - 4a + 2b)/b$,

$$\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_p \|f\|_{L^2(\mu)}.$$

Theorem (Mockenhaupt, 2000, Mitsis, 2002, Bak-Seeger, 2011)

Let μ be a positive Borel measure on \mathbb{R}^d . Assume that there exists $a, b \in (0, d)$ such that

$$\mu(B(x,r)) \lesssim r^a \qquad \forall x \in \mathbb{R}^d, r > 0$$

 $|\widehat{\mu}(\xi)| \lesssim (1+|\xi|)^{-b/2} \qquad orall \xi \in \mathbb{R}^d.$

For $p \ge (4d - 4a + 2b)/b$,

$$\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_p \|f\|_{L^2(\mu)}.$$

- If μ is a surface measure on \mathbb{P}^{d-1} , then a = b = d 1. Thus, $p \ge 2(d+1)/(d-1)$.
- Is the range of p optimal?

For fixed a and b, there could exist many measures μ which satisfy

 $\begin{array}{ll} {\sf Regularity}: & \mu(B(x,r)) \lesssim r^a & \forall x \in \mathbb{R}^d, r > 0 \\ \\ {\sf Fourier \ Decay}: & |\widehat{\mu}(\xi)| \lesssim (1+|\xi|)^{-b/2} & \forall \xi \in \mathbb{R}^d \end{array}$

For fixed a and b, there could exist many measures μ which satisfy

$$\begin{array}{ll} \mathsf{Regularity}: & \mu(B(x,r)) \lesssim r^a & \forall x \in \mathbb{R}^d, r > 0 \\ \\ \mathsf{Fourier Decay}: & |\widehat{\mu}(\xi)| \lesssim (1+|\xi|)^{-b/2} & \forall \xi \in \mathbb{R}^d \end{array}$$

For each p < (4d - 4a + 2b)/b, we want to construct a measure μ such that μ satisfies the regularity and Fourier decay, but

$$\left\|\widehat{f\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_p \|f\|_{L^2(\mu)}$$

fails.

Optimality of the restriction theorem

- Łaba and Hambrook (2013) and Chen (2016) : $0 \le b \le a < d = 1$.
- Łaba and Hambrook (2016): $d 1 \le b \le a < d$.
- All these results are based on probabilistic constructions.

Optimality of the restriction theorem

- Laba and Hambrook (2013) and Chen (2016) : $0 \le b \le a < d = 1$.
- Łaba and Hambrook (2016): $d 1 \le b \le a < d$.
- All these results are based on probabilistic constructions.

Theorem (Fraser, Hambrook and R., 2023+)

$$0 < a, b < d = 1 \qquad b \leq 2a.$$

Optimality of the restriction theorem

- Łaba and Hambrook (2013) and Chen (2016) : $0 \le b \le a < d = 1$.
- Łaba and Hambrook (2016): $d 1 \le b \le a < d$.
- All these results are based on probabilistic constructions.

Theorem (Fraser, Hambrook and R., 2023+)

$$0 < a, b < d = 1 \qquad b \leq 2a.$$

- Our construction is deterministic.
- Actually, showed the optimality for all possible a, b when d = 1, since b > 2a cannot happen. It was proved by Mitsis (2002).

- Łaba and Hambrook (2013) and Chen (2016) : $0 \le b \le a < d = 1$.
- Łaba and Hambrook (2016): $d 1 \le b \le a < d$.
- All these results are based on probabilistic constructions.

The range of p in the Mockenhaupt-Mitsis-Bak-Seeger restriction theorem is optimal if

$$0 < a, b < d = 1 \qquad b \le 2a.$$

• Li and Liu (2024+) : another deterministic construction with other additional properties

11 / 39

문 🛌 🖻

For all measures, is the range of p optimal? No

$$\begin{array}{ll} \text{Regularity}: & \mu(B(x,r)) \lesssim r^a & \forall x \in \mathbb{R}^d, r > 0 \\ \text{Fourier Decay}: & |\widehat{\mu}(\xi)| \lesssim (1+|\xi|)^{-b/2} & \forall \xi \in \mathbb{R}^d \end{array}$$

We want to construct a measure which satisfies the regularity and Fourier decay, but

$$\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)}\lesssim \|f\|_{L^2(\mu)}$$

holds even when p < (4d - 4a + 2b)/b.

13/39

Is the range of p optimal for all measures? If μ is a measure supported on a set of Hausdorff dimension $\alpha < d$,

$$\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)}\lesssim \|f\|_{L^2(\mu)}$$
 only when $p\geq rac{2d}{lpha}.$

Is the range of p optimal for all measures? If μ is a measure supported on a set of Hausdorff dimension $\alpha < d$,

$$\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)}\lesssim \|f\|_{L^2(\mu)}$$
 only when $p\geq rac{2d}{lpha}$

It is well known in geometric measure theory that

$$0 \leq a, b \leq \alpha$$
.

If $\alpha < d$, we have the following.

Is there a measure μ supported on a set of Hausdorff dimension α such that

$$\left\|\widehat{fd\mu}\right\|_{L^{p}(\mathbb{R}^{d})} \lesssim_{p} \left\|f\right\|_{L^{2}(\mu)} \quad \text{when } p = \frac{2d}{\alpha}?$$
 (2)

э

Is there a measure μ supported on a set of Hausdorff dimension α such that

$$\left\|\widehat{fd\mu}\right\|_{L^{p}(\mathbb{R}^{d})} \lesssim_{p} \|f\|_{L^{2}(\mu)} \quad \text{when } p = \frac{2d}{\alpha}?$$
(2)

- Chen and Seeger(2017) : $\alpha = d/k$ and k is an integer.
- Shmerkin and Suomala(2017) : d = 1 and $0 < \alpha < 1/2$.
- Łaba and Wang(2018) : All α and d in nearly-optimal sense. In other words, (2) holds when p > 2d/α.
- There is no explicit example known yet.

• The paraboloid has positive curvature at any point. It leads to

$$\left\|\widehat{fd\mu}\right\|_{L^{p}(\mathbb{R}^{d})} \lesssim_{p} \|f\|_{L^{2}(\mu)}$$
(3)

for $p \ge 2(d+1)/(d-1)$.

• How will the curvature affect to fractal sets?

• The paraboloid has positive curvature at any point. It leads to

$$\left\|\widehat{fd\mu}\right\|_{L^{p}(\mathbb{R}^{d})} \lesssim_{p} \|f\|_{L^{2}(\mu)}$$
(3)

for $p \ge 2(d+1)/(d-1)$.

- How will the curvature affect to fractal sets?
- Can we construct a measure µ supported on the paraboloid such that (3) holds even when p < (4d 4a + 2b)/b?
 If it is possible, how small can p be?

(R. 2023) For 0 < α < 1, there exists a measure ν supported on the parabola P := {(x, x²) : x ∈ [0, 1]} which satisfies the following:

- (R. 2023) For 0 < α < 1, there exists a measure ν supported on the parabola P := {(x, x²) : x ∈ [0, 1]} which satisfies the following:
- $\dim_H(\operatorname{supp}(\nu)) = \alpha$
- For any $p > 6/\alpha$, we have

$$\left\|\widehat{fd\nu}\right\|_{L^p(\mathbb{R}^d)}\lesssim_p \|f\|_{L^2(
u)}.$$

If $p < 6/\alpha$, the estimate above fails.

Summary

Let μ be a measure supported on a set of Hausdorff dimension α .

$$\mu(B(x,r)) \lesssim r^a \qquad \forall x \in \mathbb{R}^d, r > 0$$

 $|\widehat{\mu}(\xi)| \lesssim (1+|\xi|)^{-b/2} \qquad orall \xi \in \mathbb{R}^d.$

Let us define the critical exponent of $\boldsymbol{\mu}$ by

$$p_{c}(\mu) = \inf\{p : \left\|\widehat{fd\mu}\right\|_{L^{p}(\mathbb{R}^{d})} \lesssim_{p} \|f\|_{L^{2}(\mu)} \text{ holds}\}.$$
$$\frac{2d}{\alpha} \le p_{c}(\mu) \le \frac{4d - 4a + 2b}{b}$$

$$p_c(\mu) := \inf\{p : \left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_p \|f\|_{L^2(\mu)} \text{ holds}\}.$$

We have examples such that

• $p_c(\mu) = \frac{4d-4a+2b}{b}$ • $p_c(\mu) = \frac{2d}{\alpha}$ • $\frac{2d}{\alpha} < p_c(\mu) < \frac{4d-4a+2b}{b}$

Hausdorff dimension, regularity and Fourier decay are **not enough** to determine $p_c(\mu)$.

$$p_{c}(\mu) := \inf\{p : \left\|\widehat{fd\mu}\right\|_{L^{p}(\mathbb{R}^{d})} \lesssim_{p} \|f\|_{L^{2}(\mu)} \text{ holds}\}.$$

- Hausdorff dimension, regularity and Fourier decay are not enough to determine p_c(μ).
- Q: What are the determining factors of the optimal range of p?
- If we have explicit examples, we can hope to see a pattern.

문 🛌 🖻

The range of p in the Mockenhaupt-Mitsis-Bak-Seeger restriction theorem is optimal if

$$0 < a, b < d = 1 \qquad b \leq 2a.$$

For each p < (4d - 4a + 2b)/b, we want to construct a measure μ such that μ satisfies

 $\begin{array}{ll} {\sf Regularity}: & \mu(B(x,r)) \lesssim r^a & \forall x \in \mathbb{R}^d, r > 0 \\ \\ {\sf Fourier \ Decay}: & |\widehat{\mu}(\xi)| \lesssim (1+|\xi|)^{-b/2} & \forall \xi \in \mathbb{R}^d, \end{array}$

but does not satisfies

$$\left\|\widehat{f\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_p \|f\|_{L^2(\mu)}.$$

- 20

The range of p in the Mockenhaupt-Mitsis-Bak-Seeger restriction theorem is optimal if

$$0 < a, b < d = 1 \qquad b \leq 2a.$$

Main tools

- Well approximable numbers
- A cantor set determined by arithmetic progressions

Laba and Hambrook (2013) and Chen (2016) used two types of Cantor sets:

A random Cantor set C_R and a Cantor set C_D determined by arithmetic progressions.

• First, they constructed a measure μ on C_R such that, for any $\epsilon > 0$,

$$|\mu(I) \lesssim_{\epsilon} |I|^{\mathbf{a}-\epsilon} \qquad |\widehat{\mu}(\xi)| \lesssim_{\epsilon} (1+|\xi|)^{-\mathbf{a}/2+\epsilon}$$

where I is an interval in \mathbb{R} .

• They modified this measure so that the new measure μ is supported on $C_R \cup C_D$ and

$$\mu(I) \lesssim_{\epsilon} |I|^{\mathsf{a}-\epsilon} \qquad |\widehat{\mu}(\xi)| \lesssim_{\epsilon} (1+|\xi|)^{-\mathsf{b}/2+\epsilon}$$

for $b \leq a$.

25 / 39

Consider a sequence functions $\{f_k\}_{k\in\mathbb{N}}$ supported on C_D at the *k*th-scale.

Thus, the range of p is optimal.

• A random Cantor set C_R and a Cantor set C_D determined by arithmetic progressions.

The set of α -well-approximable numbers $E(\alpha)$ and a Cantor set $C(\beta)$ determined by arithmetic progressions.

• A random Cantor set C_R and a Cantor set C_D determined by arithmetic progressions.

The set of α -well-approximable numbers $E(\alpha)$ and a Cantor set $C(\beta)$ determined by arithmetic progressions.

To extend the range from b ≤ a to b ≤ 2a, we gave a different weight on C(β) according to the parameter β.

Set of well-approximable numbers

For $\alpha > 0$, we define the set of α -well-approximable numbers by

 $E(\alpha) := \{x \in \mathbb{R} : |x - r/q| \le |q|^{-(2+\alpha)} \text{ for infinitely many } (q, r) \in \mathbb{Z}^2\}$

The set $E(\alpha)$ arise from number theory; Major arc in circle method.

For $\alpha > 0$, we define the set of α -well-approximable numbers by

 $E(lpha) := \{x \in \mathbb{R} : |x - r/q| \le |q|^{-(2+lpha)} \text{ for infinitely many } (q, r) \in \mathbb{Z}^2\}$

The set $E(\alpha)$ arise from number theory; Major arc in circle method.

 Kaufman (1981) proved that E(α) is a ²/_{2+α}-dimensional Salem set. There exists a measure μ on E(α) such that

$$\mathsf{dim}_H(\mathsf{supp}(\mu)) = \frac{2}{2+\alpha} \qquad \mathsf{and} \qquad |\widehat{\mu}(\xi)| \lesssim_\epsilon (1+|\xi|)^{-\frac{1}{2+\alpha}+\epsilon}$$

For $\alpha > 0$, we define the set of α -well-approximable numbers by

 $E(\alpha) := \{x \in \mathbb{R} : |x - r/q| \le |q|^{-(2+\alpha)} \text{ for infinitely many } (q, r) \in \mathbb{Z}^2\}$

The set $E(\alpha)$ arise from number theory; Major arc in circle method.

 Kaufman (1981) proved that E(α) is a ²/_{2+α}-dimensional Salem set. There exists a measure μ on E(α) such that

$$\mathsf{dim}_H(\mathsf{supp}(\mu)) = \frac{2}{2+\alpha} \qquad \mathsf{and} \qquad |\widehat{\mu}(\xi)| \lesssim_\epsilon (1+|\xi|)^{-\frac{1}{2+\alpha}+\epsilon}$$

• Being a Salem set does not guarantee that $\mu(I) \lesssim_{\epsilon} |I|^{\frac{2}{2+\alpha}-\epsilon}$. But we constructed a measure which also satisfies the regularity.

Regularity and Fourier decay

• If
$$\beta = 0$$
, for any $\epsilon > 0$,
$$\mu(I) \lesssim_{\epsilon} |I|^{\frac{2}{2+\alpha}-\epsilon} \qquad |\widehat{\mu}(\xi)| \lesssim (1+|\xi|)^{-\frac{1}{2+\alpha}+\epsilon}$$

< □ > < @ >

æ

∃ ⇒

Regularity and Fourier decay

• If
$$\beta = 0$$
, for any $\epsilon > 0$,

$$\mu(I) \lesssim_{\epsilon} |I|^{rac{2}{2+lpha}-\epsilon} \qquad |\widehat{\mu}(\xi)| \lesssim (1+|\xi|)^{-rac{1}{2+lpha}+\epsilon}$$

 If 0 < β < 1, the length of the arithmetic sequence is long, so that it lowers the exponent in the Fourier decay.

$$\mu(I) \lesssim_{\epsilon} |I|^{rac{2}{2+lpha}-\epsilon} \qquad |\widehat{\mu}(\xi)| \lesssim_{\epsilon} (1+|\xi|)^{-rac{1-eta}{2+lpha}+\epsilon}$$

29/39

Regularity and Fourier decay

• If
$$\beta = 0$$
, for any $\epsilon > 0$,

$$\mu(I) \lesssim_{\epsilon} |I|^{rac{2}{2+lpha}-\epsilon} \qquad |\widehat{\mu}(\xi)| \lesssim (1+|\xi|)^{-rac{1}{2+lpha}+\epsilon}$$

 If 0 < β < 1, the length of the arithmetic sequence is long, so that it lowers the exponent in the Fourier decay.

$$|\mu(I) \lesssim_{\epsilon} |I|^{rac{2}{2+lpha}-\epsilon} \qquad |\widehat{\mu}(\xi)| \lesssim_{\epsilon} (1+|\xi|)^{-rac{1-eta}{2+lpha}+\epsilon}$$

If −1 < β < 0, the weight on the Cantor set C(β) is large, so that it lowers the exponent in the regularity.

$$\mu(I) \lesssim_{\epsilon} |I|^{\frac{2+\beta}{2+\alpha}-\epsilon} \qquad |\widehat{\mu}(\xi)| \lesssim_{\epsilon} (1+|\xi|)^{-\frac{1}{2+\alpha}+\epsilon}$$

If we ignore ϵ in the exponents, $(a, b) = (\frac{2}{2+\alpha}, \frac{2}{2+\alpha})$ when $\beta = 0$. $(a, b) \rightarrow (\frac{2}{2+\alpha}, 0)$ as $\beta \rightarrow 1$ and $(a, b) \rightarrow (\frac{1}{2+\alpha}, \frac{2}{2+\alpha})$ as $\beta \rightarrow -1$.

Knapp's example

Knapp's example gives an example such that L^2 - L^p estimate fails when μ is supported on a smooth manifold.

 $R^{-1/2} \times R^{-1}$ rectangle

 $R^{1/2} \times R$ rectangle

Knapp's example

Knapp's example gives an example such that L^2 - L^p estimate fails when μ is supported on a smooth manifold.

Knapp's example

- In Knapp's example, we consider only one component.
- In fractal sets, we consider several components ordered in a certain way.

- In Knapp's example, we consider only one component.
- In fractal sets, we consider several components ordered in a certain way.
- C(β): Cantor set determined by arithmetic progressions.
 We consider a smooth function f_k supported C(β) at the kth scale.

Failure of the L^2 - L^p estimate

We consider a smooth function f_k supported $C(\beta)$ at the kth scale.

$$\lim_{k \to \infty} \frac{\left\|\widehat{f_k d\mu}\right\|_{L^p(\mathbb{R}^d)}}{\|f_k\|_{L^2(\mu)}} = \infty \quad \text{whenever } \begin{cases} p < 2\frac{(1+\alpha-\beta)}{1-\beta} & \text{if } 0 \le \beta < 1\\ p < 2(1+\alpha-\beta) & \text{if } -1 < \beta < 0 \end{cases}$$

3

Failure of the L^2 - L^p estimate

We consider a smooth function f_k supported $C(\beta)$ at the kth scale.

$$\lim_{k \to \infty} \frac{\left\|\widehat{f_k d\mu}\right\|_{L^p(\mathbb{R}^d)}}{\|f_k\|_{L^2(\mu)}} = \infty \quad \text{whenever} \ \left\{ \begin{array}{ll} p < 2\frac{(1+\alpha-\beta)}{1-\beta} & \text{if } 0 \le \beta < 1\\ p < 2(1+\alpha-\beta) & \text{if } -1 < \beta < 0 \end{array} \right.$$

• We have

$$\begin{split} \mu(I) \lesssim_{\epsilon} |I|^{\frac{2}{2+\alpha}-\epsilon} \text{ and } |\widehat{\mu}(\xi)| \lesssim_{\epsilon} (1+|\xi|)^{-\frac{1-\beta}{2+\alpha}+\epsilon} & \text{ if } 0 < \beta < 1 \\ \mu(I) \lesssim_{\epsilon} |I|^{\frac{2+\beta}{2+\alpha}-\epsilon} \text{ and } |\widehat{\mu}(\xi)| \lesssim_{\epsilon} (1+|\xi|)^{-\frac{1}{2+\alpha}+\epsilon} & \text{ if } -1 < \beta < 0 \end{split}$$

э

Failure of the L^2 - L^p estimate

We consider a smooth function f_k supported $C(\beta)$ at the kth scale.

$$\lim_{k \to \infty} \frac{\left\|\widehat{f_k d\mu}\right\|_{L^p(\mathbb{R}^d)}}{\|f_k\|_{L^2(\mu)}} = \infty \quad \text{whenever } \begin{cases} p < 2\frac{(1+\alpha-\beta)}{1-\beta} & \text{if } 0 \le \beta < 1\\ p < 2(1+\alpha-\beta) & \text{if } -1 < \beta < 0 \end{cases}$$

We have

Dor

$$\begin{split} \mu(I) \lesssim_{\epsilon} |I|^{\frac{2}{2+\alpha}-\epsilon} \text{ and } |\widehat{\mu}(\xi)| \lesssim_{\epsilon} (1+|\xi|)^{-\frac{1-\beta}{2+\alpha}+\epsilon} & \text{ if } 0 < \beta < 1 \\ \mu(I) \lesssim_{\epsilon} |I|^{\frac{2+\beta}{2+\alpha}-\epsilon} \text{ and } |\widehat{\mu}(\xi)| \lesssim_{\epsilon} (1+|\xi|)^{-\frac{1}{2+\alpha}+\epsilon} & \text{ if } -1 < \beta < 0 \end{split}$$

• a : exponent in the regularity / b : exponent in the Fourier decay

$$\left\|\widehat{fd\mu}\right\|_{L^{p}(\mathbb{R}^{d})} \lesssim_{p} \|f\|_{L^{2}(\mu)} \quad \text{fails when } p < \frac{4d - 4a + 2b}{b}.$$

표 제 표

$$0 < a, b < d = 1 \qquad b \le 2a.$$

$$0 < a, b < d = 1$$
 $b \le 2a$.

- What about higher dimension?
- Łaba and Hambrook (2016): $d 1 \le b \le a < d$.

$$0 < a, b < d = 1$$
 $b \le 2a$.

- What about higher dimension?
- Łaba and Hambrook (2016): $d 1 \le b \le a < d$.
- We used the set of well-approximable numbers, since it is an explicit Salem set in ℝ.

$$0 < a, b < d = 1 \qquad b \le 2a.$$

- What about higher dimension?
- Łaba and Hambrook (2016): $d 1 \le b \le a < d$.
- We used the set of well-approximable numbers, since it is an explicit Salem set in ℝ.
- Explicit Salem sets in higher dimensions
 Hambrook (2017): Explicit Salem sets in R².
 Fraser and Hambrook (2023): Explicit Salem sets in R^d.

Algebraic Number Theory

For $\alpha > 0$, we define the **set of** α **-well-approximable numbers** by

 $E(\alpha) := \{x \in \mathbb{R} : |x - r/q| \le |q|^{-(2+\alpha)} \text{ for infinitely many } (q, r) \in \mathbb{Z}^2\}$

- 20

Algebraic Number Theory

For $\alpha > 0$, we define the set of α -well-approximable numbers by $E(\alpha) := \{ x \in \mathbb{R} : |x - r/q| \le |q|^{-(2+\alpha)} \text{ for infinitely many } (q, r) \in \mathbb{Z}^2 \}$ Let $|\cdot|$ be the Euclidean norm. For $\tau > 1$, $E(\tau)$ $= \{x \in \mathbb{R}^d : |x - r/q| \le |q|^{-(\tau+1)} \text{ for infinitely many } (q, r) \in \mathbb{Z}^d \times \mathbb{Z}^d\}$ How can we define $\frac{(1,1)}{(1,-1)}$?

For $\alpha > 0$, we define the set of α -well-approximable numbers by $E(\alpha) := \{x \in \mathbb{R} : |x - r/q| \le |q|^{-(2+\alpha)} \text{ for infinitely many } (q, r) \in \mathbb{Z}^2\}$ Let $|\cdot|$ be the Euclidean norm. For $\tau > 1$, $E(\tau)$ $= \{x \in \mathbb{R}^d : |x - r/q| < |q|^{-(\tau+1)} \text{ for infinitely many } (q, r) \in \mathbb{Z}^d \times \mathbb{Z}^d\}$ How can we define $\frac{(1,1)}{(1,-1)}$? $\frac{(1,1)}{(1,-1)} \simeq \frac{1+i}{1-i} = 0 + i \simeq (0,1)$

Algebraic Number Theory

- K: a *d* dimensional field extension of \mathbb{Q} .
- \mathbb{Z}_k : a ring of integers of K.
- $B = \{w_1, \cdots, w_d\}$: an integral basis for K.
- $\mathbb{Z}_k \simeq \mathbb{Z}^d$ $K \simeq \mathbb{Q}^d$ $(q_1, \cdots, q_d) \simeq q_1 w_1 + \cdots + q_d w_d$

$$\frac{r}{q} \simeq \frac{r_1 w_1 + \dots + r_d w_d}{q_1 w_1 + \dots + q_d w_d}$$

۲

.

Algebraic Number Theory

- K: a *d* dimensional field extension of \mathbb{Q} .
- \mathbb{Z}_k : a ring of integers of K.
- $B = \{w_1, \cdots, w_d\}$: an integral basis for K.
- $\mathbb{Z}_k \simeq \mathbb{Z}^d$ $K \simeq \mathbb{Q}^d$ $(q_1, \cdots, q_d) \simeq q_1 w_1 + \cdots + q_d w_d$

$$rac{r}{q}\simeq rac{r_1w_1+\cdots+r_dw_d}{q_1w_1+\cdots+q_dw_d}$$

• If $K = \mathbb{Q}[i] := \{q_1 + q_2i : q_1, q_2 \in \mathbb{Q}\}$, then $\mathbb{Z}_k = \mathbb{Z}[i], B = \{1, i\}$.

$$\frac{(1,1)}{(1,-1)} \simeq \frac{1+i}{1-i} = 0 + i \simeq (0,1)$$

۲

Let $|\cdot|$ be the Euclidean norm.

$$E(K, B, \tau)$$

= { $x \in \mathbb{R}^d$: $\left| x - \frac{r}{q} \right| \le |q|^{-(\tau+1)}$ for infinitely many $(q, r) \in \mathbb{Z}^d \times \mathbb{Z}^d$ }

• For $\tau > 1$, they constructed a measure μ on $E(K, B, \tau)$ such that

$$\dim_{H}(\operatorname{supp}(\mu)) \leq rac{2d}{1+ au} \qquad |\widehat{\mu}(\xi)| \lesssim_{\epsilon} |\xi|^{-rac{d}{1+ au}+\epsilon}$$

• Can we repeat a similar argument in this setting?

Thank you!

Image: A matched black

→ < ∃ →</p>

2