Fourier restriction and well approximable numbers

Donggeun Ryou

Indiana University, Bloomington Joint work with Robet Fraser and Kyle Hambrook

Midwestern Workshop on Asymptotic Analysis October 13, 2024

4 D F ∢母 \Rightarrow 重

 \sim

Let μ be a positive Borel measure supported on a compact set in $\mathbb{R}^d.$ We consider the estimate

$$
\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_{p,q} \|f\|_{L^q(\mu)}
$$

where

$$
\widehat{fd\mu}(\xi) := \int f(x) e^{2\pi i x \xi} d\mu(x).
$$

 $A \leq_{p,q} B$ means $A \leq C_{p,q} B$ where the constant $C_{p,q}$ only depends on p and q .

Let μ be a positive Borel measure supported on a compact set in $\mathbb{R}^d.$ We consider the estimate

$$
\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_{p,q} \|f\|_{L^q(\mu)}
$$

where

$$
\widehat{fd\mu}(\xi) := \int f(x) e^{2\pi i x \xi} d\mu(x).
$$

• If μ is a surface measure on a smooth manifold (for example, paraboloid, cone or moment curve), the estimate is related to dispersive PDEs.

Let μ be a positive Borel measure supported on a compact set in $\mathbb{R}^d.$ We consider the estimate

$$
\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_{p,q} \|f\|_{L^q(\mu)}
$$

where

$$
\widehat{fd\mu}(\xi) := \int f(x) e^{2\pi i x \xi} d\mu(x).
$$

- If μ is a surface measure on a smooth manifold (for example, paraboloid, cone or moment curve), the estimate is related to dispersive PDEs.
- In this talk, we are interested in when μ is supported on a fractal set (for example, Cantor set).

The restriction estimate (extension estimate)

• We are interested when $q = 2$.

$$
\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_{\rho} \|f\|_{L^2(\mu)}
$$
 (1)

∍

The restriction estimate (extension estimate)

• We are interested when $q = 2$.

$$
\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_{\rho} \|f\|_{L^2(\mu)}
$$
 (1)

There is but two serious function space, and they are L^2 and L^1 (or L^2 and L^{∞}).

The restriction estimate (extension estimate)

• We are interested when $q = 2$.

$$
\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_{\rho} \|f\|_{L^2(\mu)}
$$
 (1)

- There is but two serious function space, and they are L^2 and L^1 (or L^2 and L^{∞}).
- We have trivial estimate

$$
\left\|\widehat{fd\mu}\right\|_{L^\infty(\mathbb{R}^d)}\lesssim\left\|f\right\|_{L^1(\mu)}
$$

and we can interpolate with [\(1\)](#page-5-0)

Stein-Tomas theorem

Let μ be a surface measure on the $d-1$ dimensional paraboloid $\mathbb{P}^{d-1}:=\{(\mathsf{x}',|\mathsf{x}'|^2):\mathsf{x}'\in[0,1]^{d-1}\}.$ For $p\geq \frac{2(d+1)}{d-1}$ $\frac{(a+1)}{d-1},$

$$
\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_p \|f\|_{L^2(\mu)}
$$

and the range of p is optimal.

The fact that the paraboloid has positive Gaussian curvature played a key role in the proof.

$$
\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_p \|f\|_{L^2(\mu)}
$$

If μ is a surface measure on a smooth manifold (for example, paraboloid, cone or moment curve), we can use its geometric properties like dimension, smoothness and curvature.

$$
\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_p \|f\|_{L^2(\mu)}
$$

- \bullet If μ is a surface measure on a smooth manifold (for example, paraboloid, cone or moment curve), we can use its geometric properties like dimension, smoothness and curvature.
- However, if μ is supported on a fractal set (for example, Cantor set), we cannot use such geometric properties.

Theorem (Mockenhaupt, 2000, Mitsis, 2002, Bak-Seeger, 2011)

Let μ be a positive Borel measure on \mathbb{R}^d . Assume that there exists $a, b \in (0, d)$ such that

$$
\mu(B(x,r))\lesssim r^a\qquad\forall x\in\mathbb{R}^d, r>0
$$

 $|\widehat{\mu}(\xi)| \lesssim (1+|\xi|)^{-b/2} \qquad \forall \xi \in \mathbb{R}^d.$

For $p \geq (4d - 4a + 2b)/b$,

$$
\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)}\lesssim_p\|f\|_{L^2(\mu)}.
$$

Theorem (Mockenhaupt, 2000, Mitsis, 2002, Bak-Seeger, 2011)

Let μ be a positive Borel measure on \mathbb{R}^d . Assume that there exists $a, b \in (0, d)$ such that

$$
\mu(B(x,r))\lesssim r^a\qquad\forall x\in\mathbb{R}^d, r>0
$$

 $|\widehat{\mu}(\xi)| \lesssim (1+|\xi|)^{-b/2}$ $-b/2$ $\forall \xi \in \mathbb{R}^d$.

For $p \geq (4d - 4a + 2b)/b$,

$$
\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)}\lesssim_p \|f\|_{L^2(\mu)}.
$$

- If μ is a surface measure on \mathbb{P}^{d-1} , then $a=b=d-1.$ Thus, $p > 2(d+1)/(d-1).$
- \bullet Is the range of p optimal?

For fixed a and b, there could exist many measures μ which satisfy

Regularity : $\mu(B(x,r)) \lesssim r^a \qquad \forall x \in \mathbb{R}^d, r > 0$ Fourier Decay : $|\widehat{\mu}(\xi)| \lesssim (1+|\xi|)^{-b/2} \qquad \forall \xi \in \mathbb{R}^d$

 QQ

For fixed a and b, there could exist many measures μ which satisfy

Regularity:
$$
\mu(B(x, r)) \lesssim r^a \quad \forall x \in \mathbb{R}^d, r > 0
$$

\nFourier Decay: $|\widehat{\mu}(\xi)| \lesssim (1 + |\xi|)^{-b/2} \quad \forall \xi \in \mathbb{R}^d$

For each $p < (4d - 4a + 2b)/b$, we want to construct a measure μ such that μ satisfies the regularity and Fourier decay, but

$$
\left\|\widehat{f\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_p \|f\|_{L^2(\mu)}
$$

fails.

Optimality of the restriction theorem

- Laba and Hambrook (2013) and Chen (2016) : $0 \le b \le a < d = 1$.
- Laba and Hambrook (2016): $d-1 \leq b \leq a < d$.
- All these results are based on probabilistic constructions.

Optimality of the restriction theorem

- Laba and Hambrook (2013) and Chen (2016) : $0 \le b \le a \le d = 1$.
- \bullet Laba and Hambrook (2016): $d-1 \leq b \leq a \leq d$.
- All these results are based on probabilistic constructions.

Theorem (Fraser, Hambrook and R., 2023 $+$)

The range of p in the Mockenhaupt-Mitsis-Bak-Seeger restrictioin theorem is optimal if

$$
0
$$

Optimality of the restriction theorem

- Laba and Hambrook (2013) and Chen (2016) : $0 \le b \le a \le d = 1$.
- Laba and Hambrook (2016): $d-1 \leq b \leq a \leq d$.
- All these results are based on probabilistic constructions.

Theorem (Fraser, Hambrook and R., 2023 $+$)

The range of p in the Mockenhaupt-Mitsis-Bak-Seeger restrictioin theorem is optimal if

$$
0
$$

- Our construction is deterministic.
- Actually, showed the optimality for all possible a, b when $d = 1$, since $b > 2a$ cannot happen. It was proved by Mitsis (2002).

 Ω

- Laba and Hambrook (2013) and Chen (2016) : $0 \le b \le a \le d = 1$.
- Laba and Hambrook (2016): $d-1 \leq b \leq a < d$.
- All these results are based on probabilistic constructions.

The range of p in the Mockenhaupt-Mitsis-Bak-Seeger restrictioin theorem is optimal if

$$
0
$$

• Li and Liu $(2024+)$: another deterministic construction with other additional properties

 Ω

4 D F

É

Э×

For all measures, is the range of p optimal? No

Regularity:
$$
\mu(B(x, r)) \lesssim r^a \quad \forall x \in \mathbb{R}^d, r > 0
$$

\nFourier Decay:
$$
|\widehat{\mu}(\xi)| \lesssim (1 + |\xi|)^{-b/2} \quad \forall \xi \in \mathbb{R}^d
$$

We want to construct a measure which satisfies the regularity and Fourier decay, but

$$
\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)}\lesssim\|f\|_{L^2(\mu)}
$$

holds even when $p < (4d - 4a + 2b)/b$.

э

Is the range of p optimal for all measures?

If μ is a measure supported on a set of Hausdorff dimension $\alpha < d$.

$$
\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim \|f\|_{L^2(\mu)} \qquad \text{only when} \quad p \geq \frac{2d}{\alpha}.
$$

 Ω

Is the range of p optimal for all measures?

If μ is a measure supported on a set of Hausdorff dimension $\alpha < d$,

$$
\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim \|f\|_{L^2(\mu)} \qquad \text{only when} \quad p \geq \frac{2d}{\alpha}.
$$

It is well known in geometric measure theory that

$$
0\leq a,b\leq \alpha.
$$

If $\alpha < d$, we have the following.

Is there a measure μ supported on a set of Hausdorff dimension α such that

$$
\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_{\rho} \|f\|_{L^2(\mu)} \qquad \text{when } \rho = \frac{2d}{\alpha}?
$$
 (2)

 \leftarrow \Box

 QQ

Is there a measure μ supported on a set of Hausdorff dimension α such that

$$
\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_{p} \left\|f\right\|_{L^2(\mu)} \qquad \text{when } p = \frac{2d}{\alpha}?
$$
 (2)

- Chen and Seeger(2017) : $\alpha = d/k$ and k is an integer.
- Shmerkin and Suomala(2017) : $d = 1$ and $0 < \alpha < 1/2$.
- Laba and Wang(2018) : All α and d in nearly-optimal sense. In other words, [\(2\)](#page-23-0) holds when $p > 2d/\alpha$.
- There is no explicit example known yet.

 Ω

The paraboloid has positive curvature at any point. It leads to

$$
\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_{\rho} \|f\|_{L^2(\mu)}
$$
 (3)

for $p \geq 2(d+1)/(d-1)$.

• How will the curvature affect to fractal sets?

 Ω

The paraboloid has positive curvature at any point. It leads to

$$
\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_{\rho} \|f\|_{L^2(\mu)}
$$
 (3)

for $p \geq 2(d+1)/(d-1)$.

- How will the curvature affect to fractal sets?
- Can we construct a measure μ supported on the paraboloid such that [\(3\)](#page-25-0) holds even when $p < (4d - 4a + 2b)/b$? If it is possible, how small can p be?

• (R. 2023) For $0 < \alpha < 1$, there exists a measure ν supported on the **parabola** $\mathbb{P} := \{(x, x^2) : x \in [0, 1]\}$ which satisfies the following:

つひひ

- (R. 2023) For $0 < \alpha < 1$, there exists a measure ν supported on the **parabola** $\mathbb{P} := \{(x, x^2) : x \in [0, 1]\}$ which satisfies the following:
- dim_H(supp(ν)) = α
- For any $p > 6/\alpha$, we have

$$
\left\|\widehat{fd\nu}\right\|_{L^p(\mathbb{R}^d)}\lesssim_p\|f\|_{L^2(\nu)}.
$$

If $p < 6/\alpha$, the estimate above fails.

Summary

Let μ be a measure supported on a set of Hausdorff dimension α .

$$
\mu(B(x,r)) \lesssim r^a \qquad \forall x \in \mathbb{R}^d, r > 0
$$

$$
|\widehat{\mu}(\xi)| \lesssim (1 + |\xi|)^{-b/2} \qquad \forall \xi \in \mathbb{R}^d.
$$

Let us define the critical exponent of μ by

$$
p_c(\mu) = \inf \{ p : \left\| \widehat{fd\mu} \right\|_{L^p(\mathbb{R}^d)} \lesssim_p \|f\|_{L^2(\mu)}
$$
 holds $\}.$
$$
\frac{2d}{\alpha} \leq p_c(\mu) \leq \frac{4d - 4a + 2b}{b}
$$

$$
p_c(\mu) := \inf \{ p : \left\| \widehat{fd\mu} \right\|_{L^p(\mathbb{R}^d)} \lesssim_p \|f\|_{L^2(\mu)} \text{ holds} \}.
$$

We have examples such that

 $p_c(\mu) = \frac{4d-4a+2b}{b}$ $p_c(\mu) = \frac{2d}{\alpha}$ $\frac{2d}{\alpha}<\rho_{c}(\mu)<\frac{4d-4a+2b}{b}$ b

Hausdorff dimension, regularity and Fourier decay are not enough to determine $p_c(\mu)$.

э

$$
p_c(\mu):=\inf\{p:\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)}\lesssim_p \|f\|_{L^2(\mu)} \text{ holds}\}.
$$

- Hausdorff dimension, regularity and Fourier decay are not enough to determine $p_c(\mu)$.
- \bullet Q: What are the determining factors of the optimal range of p ?
- **If we have explicit examples, we can hope to see a pattern.**

Donggeun Ryou Fourier restriction and well approximable num Ctober 13, 2024 21/39

 \sim

4日下

∢母

É

 $\leftarrow \equiv$ \rightarrow

The range of p in the Mockenhaupt-Mitsis-Bak-Seeger restrictioin theorem is optimal if

$$
0
$$

For each $p < (4d - 4a + 2b)/b$, we want to construct a measure μ such that μ satisfies

Regularity : $\mu(B(x,r)) \lesssim r^a \qquad \forall x \in \mathbb{R}^d, r > 0$ Fourier Decay : $|\widehat{\mu}(\xi)| \lesssim (1+|\xi|)^{-b/2} \qquad \forall \xi \in \mathbb{R}^d,$

but does not satisfies

$$
\left\|\widehat{f\mu}\right\|_{L^p(\mathbb{R}^d)}\lesssim_p \|f\|_{L^2(\mu)}.
$$

イ御 トメ ミトメ ミトリ (目)

The range of p in the Mockenhaupt-Mitsis-Bak-Seeger restrictioin theorem is optimal if

$$
0
$$

Main tools

- Well approximable numbers
- A cantor set determined by arithmetic progressions

 Ω

Laba and Hambrook (2013) and Chen (2016) used two types of Cantor sets:

A random Cantor set C_R and a Cantor set C_D determined by arithmetic progressions.

 Ω

• First, they constructed a measure μ on C_R such that, for any $\epsilon > 0$,

$$
\mu(I) \lesssim_{\epsilon} |I|^{a-\epsilon} \qquad |\widehat{\mu}(\xi)| \lesssim_{\epsilon} (1+|\xi|)^{-a/2+\epsilon}
$$

where I is an interval in \mathbb{R} .

• They modified this measure so that the new measure μ is supported on $C_R \cup C_D$ and

$$
\mu(I) \lesssim_{\epsilon} |I|^{a-\epsilon} \qquad |\widehat{\mu}(\xi)| \lesssim_{\epsilon} (1+|\xi|)^{-b/2+\epsilon}
$$

for $b \le a$.

Consider a sequence functions $\{f_k\}_{k\in\mathbb{N}}$ supported on C_D at the kth-scale.

Thus, the range of p is optimal.

• A random Cantor set C_R and a Cantor set C_D determined by arithmetic progressions.

The set of α -well-approximable numbers $E(\alpha)$ and a Cantor set $C(\beta)$ determined by arithmetic progressions.

↓

 Ω

• A random Cantor set C_R and a Cantor set C_D determined by arithmetic progressions.

The set of α -well-approximable numbers $E(\alpha)$ and a Cantor set $C(\beta)$ determined by arithmetic progressions.

↓

• To extend the range from $b \le a$ to $b \le 2a$, we gave a different weight on $C(\beta)$ according to the parameter β .

Set of well-approximable numbers

For $\alpha > 0$, we define the set of α -well-approximable numbers by

 $\mathcal{E}(\alpha) := \{ \mathsf{x} \in \mathbb{R} : |\mathsf{x} - \mathsf{r}/\mathsf{q}| \leq |\mathsf{q}|^{-(2+\alpha)} \text{ for infinitely many } (\mathsf{q},\mathsf{r}) \in \mathbb{Z}^2 \}$

The set $E(\alpha)$ arise from number theory; Major arc in circle method.

 QQ

 $\mathcal{E}(\alpha) := \{ \mathsf{x} \in \mathbb{R} : |\mathsf{x} - \mathsf{r}/\mathsf{q}| \leq |\mathsf{q}|^{-(2+\alpha)} \text{ for infinitely many } (\mathsf{q},\mathsf{r}) \in \mathbb{Z}^2 \}$

The set $E(\alpha)$ arise from number theory; Major arc in circle method.

Kaufman (1981) proved that $E(\alpha)$ is a $\frac{2}{2+\alpha}$ -dimensional <code>Salem set</code>. There exists a measure μ on $E(\alpha)$ such that

$$
\dim_{H}(\textnormal{supp}(\mu)) = \frac{2}{2+\alpha} \qquad \text{and} \qquad |\widehat{\mu}(\xi)| \lesssim_{\epsilon} (1+|\xi|)^{-\frac{1}{2+\alpha}+\epsilon}
$$

 $\mathcal{E}(\alpha) := \{ \mathsf{x} \in \mathbb{R} : |\mathsf{x} - \mathsf{r}/\mathsf{q}| \leq |\mathsf{q}|^{-(2+\alpha)} \text{ for infinitely many } (\mathsf{q},\mathsf{r}) \in \mathbb{Z}^2 \}$

The set $E(\alpha)$ arise from number theory; Major arc in circle method.

Kaufman (1981) proved that $E(\alpha)$ is a $\frac{2}{2+\alpha}$ -dimensional <code>Salem set</code>. There exists a measure μ on $E(\alpha)$ such that

$$
\dim_{H}(\textnormal{supp}(\mu)) = \frac{2}{2+\alpha} \qquad \text{and} \qquad |\widehat{\mu}(\xi)| \lesssim_{\epsilon} (1+|\xi|)^{-\frac{1}{2+\alpha}+\epsilon}
$$

Being a Salem set does not guarantee that $\mu(I)\lesssim_\epsilon|I|^{\frac{2}{2+\alpha}-\epsilon}.$ But we constructed a measure which also satisfies the regularity.

Regularity and Fourier decay

• If
$$
\beta = 0
$$
, for any $\epsilon > 0$,

$$
\mu(I) \lesssim_{\epsilon} |I|^{\frac{2}{2+\alpha}-\epsilon} \qquad |\widehat{\mu}(\xi)| \lesssim (1+|\xi|)^{-\frac{1}{2+\alpha}+\epsilon}
$$

 \rightarrow \equiv \rightarrow ٠

← ロ → → ← 何 →

重

Regularity and Fourier decay

• If
$$
\beta = 0
$$
, for any $\epsilon > 0$,

$$
\mu(I) \lesssim_{\epsilon} |I|^{\frac{2}{2+\alpha}-\epsilon} \qquad |\widehat{\mu}(\xi)| \lesssim (1+|\xi|)^{-\frac{1}{2+\alpha}+\epsilon}
$$

• If $0 < \beta < 1$, the length of the arithmetic sequence is long, so that it lowers the exponent in the Fourier decay.

$$
\mu(I) \lesssim_{\epsilon} |I|^{\frac{2}{2+\alpha}-\epsilon} \qquad |\widehat{\mu}(\xi)| \lesssim_{\epsilon} (1+|\xi|)^{-\frac{1-\beta}{2+\alpha}+\epsilon}
$$

Regularity and Fourier decay

• If
$$
\beta = 0
$$
, for any $\epsilon > 0$,

$$
\mu(I) \lesssim_{\epsilon} |I|^{\frac{2}{2+\alpha}-\epsilon} \qquad |\widehat{\mu}(\xi)| \lesssim (1+|\xi|)^{-\frac{1}{2+\alpha}+\epsilon}
$$

• If $0 < \beta < 1$, the length of the arithmetic sequence is long, so that it lowers the exponent in the Fourier decay.

$$
\mu(I) \lesssim_{\epsilon} |I|^{\frac{2}{2+\alpha}-\epsilon} \qquad |\widehat{\mu}(\xi)| \lesssim_{\epsilon} (1+|\xi|)^{-\frac{1-\beta}{2+\alpha}+\epsilon}
$$

• If $-1 < \beta < 0$, the weight on the Cantor set $C(\beta)$ is large, so that it lowers the exponent in the regularity.

$$
\mu(I) \lesssim_{\epsilon} |I|^{\frac{2+\beta}{2+\alpha}-\epsilon} \qquad |\widehat{\mu}(\xi)| \lesssim_{\epsilon} (1+|\xi|)^{-\frac{1}{2+\alpha}+\epsilon}
$$

If we ignore ϵ in the exponents, $(a, b) = (\frac{2}{2+\alpha}, \frac{2}{2+\alpha})$ $\frac{2}{2+\alpha}$) when $\beta = 0$. $(a, b) \rightarrow (\frac{2}{2+}$ $\frac{2}{2+\alpha}, 0)$ as $\beta \rightarrow 1$ and $(a, b) \rightarrow (\frac{1}{2+\alpha})$ $\frac{1}{2+\alpha}, \frac{2}{2+}$ $\frac{2}{2+\alpha}$) as $\beta \to -1$.

Knapp's example gives an example such that L^2 - L^p estimate fails when μ is supported on a smooth manifold.

Knapp's example gives an example such that L^2 - L^p estimate fails when μ is supported on a smooth manifold.

- In Knapp's example, we consider only one component.
- In fractal sets, we consider several components ordered in a certain way.

∍

- In Knapp's example, we consider only one component.
- In fractal sets, we consider several components ordered in a certain way.
- \bullet $C(\beta)$: Cantor set determined by arithmectic progressions. We consider a smooth function f_k supported $C(\beta)$ at the kth scale.

つひい

Failure of the L^2 - L^p estimate

We consider a smooth function f_k supported $C(\beta)$ at the kth scale.

$$
\lim_{k \to \infty} \frac{\left\| \widehat{f_k} \widehat{d\mu} \right\|_{L^p(\mathbb{R}^d)}}{\| f_k \|_{L^2(\mu)}} = \infty \quad \text{whenever } \left\{ \begin{array}{cc} p < 2 \frac{(1+\alpha-\beta)}{1-\beta} & \text{if } 0 \le \beta < 1 \\ p < 2(1+\alpha-\beta) & \text{if } -1 < \beta < 0 \end{array} \right.
$$

э

 QQ

Failure of the L^2 - L^p estimate

We consider a smooth function f_k supported $C(\beta)$ at the kth scale.

$$
\lim_{k \to \infty} \frac{\left\| \widehat{f_k d\mu} \right\|_{L^p(\mathbb{R}^d)}}{\left\| f_k \right\|_{L^2(\mu)}} = \infty \quad \text{whenever } \left\{ \begin{array}{cc} p < 2 \frac{(1+\alpha-\beta)}{1-\beta} & \text{if } 0 \le \beta < 1 \\ p < 2(1+\alpha-\beta) & \text{if } -1 < \beta < 0 \end{array} \right.
$$

o We have

$$
\mu(I) \lesssim_{\epsilon} |I|^{\frac{2}{2+\alpha}-\epsilon} \text{ and } |\widehat{\mu}(\xi)| \lesssim_{\epsilon} (1+|\xi|)^{-\frac{1-\beta}{2+\alpha}+\epsilon} \quad \text{if } 0 < \beta < 1
$$

$$
\mu(I) \lesssim_{\epsilon} |I|^{\frac{2+\beta}{2+\alpha}-\epsilon} \text{ and } |\widehat{\mu}(\xi)| \lesssim_{\epsilon} (1+|\xi|)^{-\frac{1}{2+\alpha}+\epsilon} \quad \text{if } -1 < \beta < 0
$$

 QQ

Failure of the L^2 - L^p estimate

We consider a smooth function f_k supported $C(\beta)$ at the kth scale.

$$
\lim_{k \to \infty} \frac{\left\| \widehat{f_k d\mu} \right\|_{L^p(\mathbb{R}^d)}}{\left\| f_k \right\|_{L^2(\mu)}} = \infty \quad \text{whenever } \left\{ \begin{array}{cc} p < 2 \frac{(1+\alpha-\beta)}{1-\beta} & \text{if } 0 \le \beta < 1 \\ p < 2(1+\alpha-\beta) & \text{if } -1 < \beta < 0 \end{array} \right.
$$

We have

$$
\mu(I) \lesssim_{\epsilon} |I|^{\frac{2}{2+\alpha}-\epsilon} \text{ and } |\widehat{\mu}(\xi)| \lesssim_{\epsilon} (1+|\xi|)^{-\frac{1-\beta}{2+\alpha}+\epsilon} \quad \text{if } 0 < \beta < 1
$$

$$
\mu(I) \lesssim_{\epsilon} |I|^{\frac{2+\beta}{2+\alpha}-\epsilon} \text{ and } |\widehat{\mu}(\xi)| \lesssim_{\epsilon} (1+|\xi|)^{-\frac{1}{2+\alpha}+\epsilon} \quad \text{if } -1 < \beta < 0
$$

• a : exponent in the regularity $\smash{/b}$: exponent in the Fourier decay

$$
\left\|\widehat{fd\mu}\right\|_{L^p(\mathbb{R}^d)} \lesssim_p \|f\|_{L^2(\mu)} \qquad \text{fails when}\quad p < \frac{4d-4a+2b}{b}.
$$
\n
$$
\text{Donggeun Ryou}
$$
\n
$$
\text{Fourier restriction and well approximable num}
$$
\n
$$
\text{October 13, 2024} \qquad \frac{33}{33}
$$

4 **D F** ∢母 \sim

重

The range of p in the Mockenhaupt-Mitsis-Bak-Seeger restrictioin theorem is optimal if

$$
0
$$

The range of p in the Mockenhaupt-Mitsis-Bak-Seeger restrictioin theorem is optimal if

$$
0
$$

- What about higher dimension?
- Laba and Hambrook (2016): $d-1 \leq b \leq a < d$.

The range of p in the Mockenhaupt-Mitsis-Bak-Seeger restrictioin theorem is optimal if

$$
0
$$

- What about higher dimension?
- Laba and Hambrook (2016): $d-1 \leq b \leq a < d$.
- We used the set of well-approximable numbers, since it is an explicit Salem set in R.

The range of p in the Mockenhaupt-Mitsis-Bak-Seeger restrictioin theorem is optimal if

$$
0
$$

- What about higher dimension?
- Laba and Hambrook (2016): $d-1 \leq b \leq a < d$.
- We used the set of well-approximable numbers, since it is an explicit Salem set in R.
- Explicit Salem sets in higher dimensions Hambrook (2017): Explicit Salem sets in \mathbb{R}^2 . Fraser and Hambrook (2023): Explicit Salem sets in \mathbb{R}^d .

 $\mathcal{E}(\alpha) := \{ \mathsf{x} \in \mathbb{R} : |\mathsf{x} - \mathsf{r}/\mathsf{q}| \leq |\mathsf{q}|^{-(2+\alpha)} \text{ for infinitely many } (\mathsf{q},\mathsf{r}) \in \mathbb{Z}^2 \}$

目

 QQ

$$
E(\alpha) := \{x \in \mathbb{R} : |x - r/q| \le |q|^{-(2+\alpha)} \text{ for infinitely many } (q, r) \in \mathbb{Z}^2\}
$$

Let $|\cdot|$ be the Euclidean norm. For $\tau > 1$,

$$
E(\tau)
$$

= { $x \in \mathbb{R}^d : |x - r/q| \le |q|^{-(\tau+1)}$ for infinitely many $(q, r) \in \mathbb{Z}^d \times \mathbb{Z}^d$ }
How can we define $\frac{(1,1)}{(1,-1)}$?

$$
E(\alpha) := \{x \in \mathbb{R} : |x - r/q| \le |q|^{-(2+\alpha)} \text{ for infinitely many } (q, r) \in \mathbb{Z}^2\}
$$

Let $|\cdot|$ be the Euclidean norm. For $\tau > 1$,

$$
E(\tau)
$$

= {x \in \mathbb{R}^d : |x - r/q| \le |q|^{-(\tau+1)} \text{ for infinitely many } (q, r) \in \mathbb{Z}^d \times \mathbb{Z}^d }
How can we define $\frac{(1,1)}{(1,-1)}$?

$$
\frac{(1,1)}{(1,-1)} \simeq \frac{1+i}{1-i} = 0 + i \simeq (0,1)
$$

Algebraic Number Theory

- \bullet K: a d dimensional field extension of \mathbb{Q} .
- \bullet \mathbb{Z}_k : a ring of integers of K.
- $B = \{w_1, \dots, w_d\}$: an integral basis for K.
- $\mathbb{Z}_{k} \simeq \mathbb{Z}^{d} \hspace{0.5cm} K \simeq \mathbb{Q}^{d} \hspace{0.5cm} (q_{1}, \cdots, q_{d}) \simeq q_{1}w_{1} + \cdots + q_{d}w_{d}$

$$
\frac{r}{q} \simeq \frac{r_1 w_1 + \cdots + r_d w_d}{q_1 w_1 + \cdots + q_d w_d}
$$

.

 \bullet

G.

 QQQ

Algebraic Number Theory

- \bullet K: a d dimensional field extension of \mathbb{Q} .
- \bullet \mathbb{Z}_k : a ring of integers of K.
- $B = \{w_1, \dots, w_d\}$: an integral basis for K.
- $\mathbb{Z}_{k} \simeq \mathbb{Z}^{d} \hspace{0.5cm} K \simeq \mathbb{Q}^{d} \hspace{0.5cm} (q_{1}, \cdots, q_{d}) \simeq q_{1}w_{1} + \cdots + q_{d}w_{d}$

$$
\frac{r}{q} \simeq \frac{r_1 w_1 + \dots + r_d w_d}{q_1 w_1 + \dots + q_d w_d}
$$

• If $K = \mathbb{Q}[i] := \{q_1 + q_2i : q_1, q_2 \in \mathbb{Q}\},\$ then $\mathbb{Z}_k = \mathbb{Z}[i], B = \{1, i\}.$ $(1,1)$ 1+i

$$
\frac{(1,1)}{(1,-1)} \simeq \frac{1+i}{1-i} = 0 + i \simeq (0,1)
$$

.

 \bullet

 QQQ

Let $|\cdot|$ be the Euclidean norm.

$$
E(K, B, \tau)
$$

= $\{x \in \mathbb{R}^d : \left| x - \frac{r}{q} \right| \le |q|^{-(\tau+1)}$ for infinitely many $(q, r) \in \mathbb{Z}^d \times \mathbb{Z}^d \}$

• For $\tau > 1$, they constructed a measure μ on $E(K, B, \tau)$ such that

$$
\dim_H(\text{supp}(\mu)) \leq \frac{2d}{1+\tau} \qquad |\widehat{\mu}(\xi)| \lesssim_{\epsilon} |\xi|^{-\frac{d}{1+\tau}+\epsilon}
$$

• Can we repeat a similar argument in this setting?

Thank you!

×,

← ロ → → ← 何 →

 \mathbf{y} of \mathbf{B} is

重