

Zeros of Asymptotically Extremal Polynomials

E. B. Saff Vanderbilt University

Midwestern Workshop on Asymptotic Analysis IUPU-Fort Wayne September 2014

VANDERBILT UNIVERSITY

Sector opening = $\pi/2$

 $\mathcal{O} \land \mathcal{O}$

Definition

Let *G* be a bounded simply connected domain in the complex plane. A point z_0 on the boundary of *G* is said to be a **non-convex type singularity** (NCS) if it satisfies the following two conditions:

- (i) There exists a closed disk \overline{D} with z_0 on its circumference, such that \overline{D} is contained in *G* except for the point z_0 .
- (ii) There exists a line segment *L* connecting a point ζ_0 in the interior of \overline{D} to z_0 such that

$$\lim_{\substack{z \to z_0 \\ z \in L}} \frac{g_G(z, \zeta_0)}{|z - z_0|} = +\infty,$$
(1)

where $g_G(z, \zeta_0)$ denotes the Green function of *G* with pole at $\zeta_0 \in G$.

Theorem

Let $E \subset \mathbb{C}$ be a compact set of positive capacity, Ω the unbounded component of $\overline{\mathbb{C}} \setminus E$, and $\mathcal{E} := \overline{\mathbb{C}} \setminus \Omega$ denote the polynomial convex hull of E. Assume there is closed set $E_0 \subset \mathcal{E}$ with the following three properties:

- (i) $cap(E_0) > 0;$
- (ii) either $E_0 = \mathcal{E}$ or dist $(E_0, \mathcal{E} \setminus E_0) > 0$;
- (iii) either the interior $int(E_0)$ of E_0 is empty or the boundary of each open component of $int(E_0)$ contains an NCS point.

Let V be an open set containing E_0 such that dist $(V, \mathcal{E} \setminus E_0) > 0$ if $E_0 \neq \mathcal{E}$. Then for any asymptotically extremal sequence of monic polynomials $\{P_n\}_{n \in \mathcal{N}}$ for E,

$$u_{P_n}|_V \xrightarrow{\star} \mu_E|_{E_0}, \quad n \to \infty, \quad n \in \mathcal{N},$$
(2)

where $\mu|_{\mathcal{K}}$ denotes the restriction of a measure μ to the set \mathcal{K} .

Definition

A measure μ is said to be an **electrostatic skeleton** for a compact *E* with cap(*E*) > 0, if supp(μ) has empty interior, connected complement, and $\mu^{b} = \mu_{E}$.

Conjecture

Every convex polygonal region has an electrostatic skeleton.