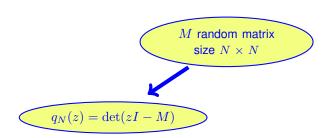
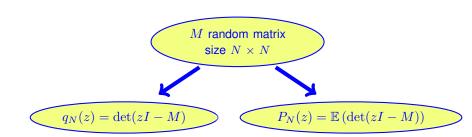
Random Matrices and Zeros of Polynomials

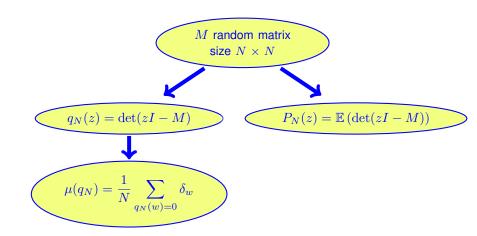
Guilherme Silva

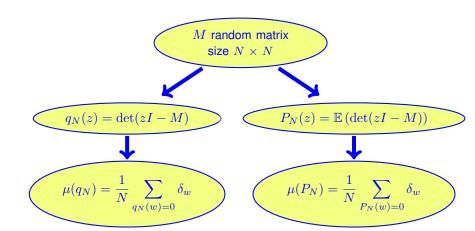
Joint work with Pavel Bleher (IUPUI) [Memoirs of the AMS, to appear]

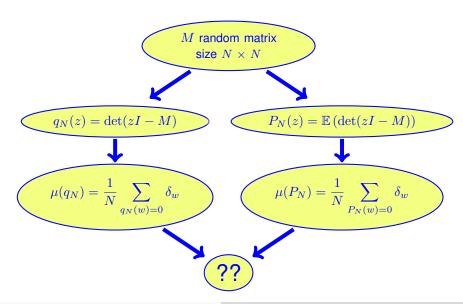
M random matrix size N imes N

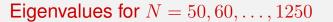




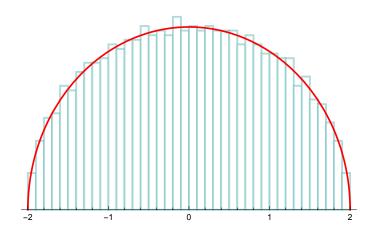


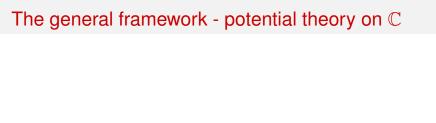






Eigenvalues for $N = 50, 60, \dots, 1250$





Basic ingredients:

 $ightharpoonup D\subset \mathbb{C}$ closed

Basic ingredients:

- ▶ $D \subset \mathbb{C}$ closed
- $lackbox{$lackbox{$\scriptstyle Q$}}:D
 ightarrow\mathbb{R}$ "sufficiently nice"

Basic ingredients:

- ▶ $D \subset \mathbb{C}$ closed
- $ightharpoonup Q:D
 ightarrow\mathbb{R}$ "sufficiently nice"

The equilibrium measure $\mu_Q=\mu_{Q,D}$ of D is the probability measure that minimizes

$$\iint \log \frac{1}{|s-z|} d\mu(s) d\mu(z) + \int Q(z) d\mu(z)$$

over all probability measures μ with supp $\mu \subset D$.

Basic ingredients:

- ▶ $D \subset \mathbb{C}$ closed
- $ightharpoonup Q:D
 ightarrow\mathbb{R}$ "sufficiently nice"

The equilibrium measure $\mu_Q=\mu_{Q,D}$ of D is the probability measure that minimizes

$$\iint \log \frac{1}{|s-z|} d\mu(s) d\mu(z) + \int Q(z) d\mu(z)$$

over all probability measures μ with supp $\mu \subset D$.

▶ For D and Q nice enough, μ_Q uniquely exists

Basic ingredients:

- ▶ $D \subset \mathbb{C}$ closed
- $ightharpoonup Q:D
 ightarrow\mathbb{R}$ "sufficiently nice"

The equilibrium measure $\mu_Q=\mu_{Q,D}$ of D is the probability measure that minimizes

$$\iint \log \frac{1}{|s-z|} d\mu(s) d\mu(z) + \int Q(z) d\mu(z)$$

over all probability measures μ with supp $\mu \subset D$.

- ▶ For D and Q nice enough, μ_Q uniquely exists
- ▶ If *D* is unbounded, we have to impose sufficient growth for *Q*

Basic ingredients:

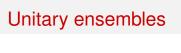
- ▶ $D \subset \mathbb{C}$ closed
- $ightharpoonup Q:D
 ightarrow\mathbb{R}$ "sufficiently nice"

The equilibrium measure $\mu_Q=\mu_{Q,D}$ of D is the probability measure that minimizes

$$\iint \log \frac{1}{|s-z|} d\mu(s) d\mu(z) + \int Q(z) d\mu(z)$$

over all probability measures μ with supp $\mu \subset D$.

- ▶ For D and Q nice enough, μ_Q uniquely exists
- If D is unbounded, we have to impose sufficient growth for Q
- Finding $\operatorname{supp} \mu_Q$ is challenging



▶ Unitary ensembles: space \mathcal{H}_N of $N \times N$ hermitian matrices equipped with probability distribution

$$\frac{1}{\mathcal{Z}_N}e^{-N\operatorname{Tr}V(M)}dM,\tag{1}$$

where V is a real polynomial of even degree and dM is the Lebesgue measure on $\mathcal{H}_N \simeq \mathbb{R}^{N^2}$.

▶ Unitary ensembles: space \mathcal{H}_N of $N \times N$ hermitian matrices equipped with probability distribution

$$\frac{1}{\mathcal{Z}_N}e^{-N\operatorname{Tr}V(M)}dM,\tag{1}$$

where V is a real polynomial of even degree and dM is the Lebesgue measure on $\mathcal{H}_N \simeq \mathbb{R}^{N^2}$.

• Unitary because (1) is invariant under unitary conjugation $M \mapsto UMU^*$

▶ Unitary ensembles: space \mathcal{H}_N of $N \times N$ hermitian matrices equipped with probability distribution

$$\frac{1}{\mathcal{Z}_N} e^{-N \operatorname{Tr} V(M)} dM, \tag{1}$$

where V is a real polynomial of even degree and dM is the Lebesgue measure on $\mathcal{H}_N \simeq \mathbb{R}^{N^2}$.

- Unitary because (1) is invariant under unitary conjugation
 M → UMU*
- When $V(x) = x^2/2$, entries are independent Gaussian random variables (GUE)

▶ Unitary ensembles: space \mathcal{H}_N of $N \times N$ hermitian matrices equipped with probability distribution

$$\frac{1}{\mathcal{Z}_N} e^{-\mathbf{N}\operatorname{Tr}V(M)} dM,\tag{1}$$

where V is a real polynomial of even degree and dM is the Lebesgue measure on $\mathcal{H}_N \simeq \mathbb{R}^{N^2}$.

- Unitary because (1) is invariant under unitary conjugation $M \mapsto UMU^*$
- When $V(x) = x^2/2$, entries are independent Gaussian random variables (GUE)
- The factor N makes sure that eigenvalues remain bounded

We can see the diagonalization

$$M = U \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_N \end{pmatrix} U^*$$

as a change of variables

We can see the diagonalization

$$M = U \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_N \end{pmatrix} U^*$$

as a change of variables

Computing the Jacobian of the change of variables we get that

$$\frac{1}{Z_N} e^{-N \operatorname{Tr} V(M)} dM = \frac{1}{Z_N} \prod_{j < k} (\lambda_j - \lambda_k)^2 \prod_j e^{-NV(\lambda_j)} d\lambda_1 \dots d\lambda_N dU$$

▶ We can see the diagonalization

$$M = U \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_N \end{pmatrix} U^*$$

as a change of variables

Computing the Jacobian of the change of variables we get that

$$\frac{1}{\mathcal{Z}_N} e^{-N \operatorname{Tr} V(M)} dM = \frac{1}{Z_N} \prod_{j < k} (\lambda_j - \lambda_k)^2 \prod_j e^{-NV(\lambda_j)} d\lambda_1 \dots d\lambda_N dU$$

- ► Consequences:
 - Eigenvalues and eigenvectors are independent

▶ We can see the diagonalization

$$M = U \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_N \end{pmatrix} U^*$$

as a change of variables

Computing the Jacobian of the change of variables we get that

$$\frac{1}{\mathcal{Z}_N} e^{-N \operatorname{Tr} V(M)} dM = \frac{1}{Z_N} \prod_{j < k} (\lambda_j - \lambda_k)^2 \prod_j e^{-NV(\lambda_j)} d\lambda_1 \dots d\lambda_N dU$$

- Consequences:
 - Eigenvalues and eigenvectors are independent
 - Eigenvectors are uniformly distributed on $\mathcal{U}(N)$

We can see the diagonalization

$$M = U \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_N \end{pmatrix} U^*$$

as a change of variables

Computing the Jacobian of the change of variables we get that

$$\frac{1}{\mathcal{Z}_N} e^{-N \operatorname{Tr} V(M)} dM =$$

$$\frac{1}{Z_N} \prod_{j < k} (\lambda_j - \lambda_k)^2 \prod_j e^{-NV(\lambda_j)} d\lambda_1 \dots d\lambda_N dU$$

- Consequences:
 - Eigenvalues and eigenvectors are independent
 - Eigenvectors are uniformly distributed on $\mathcal{U}(N)$
 - Eigenvalues exhibit local repulsion

Unitary ensembles - global behavior of eigenvalues

We can rewrite

$$\frac{1}{Z_N} \prod_{j < k} (\lambda_j - \lambda_k)^2 \prod_j e^{-NV(\lambda_j)} = \frac{1}{Z_N} e^{-N^2 H(\lambda_1, \dots, \lambda_N)}$$

where

$$H(\lambda_1, \dots, \lambda_N) = \frac{1}{N^2} \sum_{j \neq k} \log \frac{1}{|\lambda_j - \lambda_k|} + \frac{1}{N} \sum_j V(\lambda_j)$$

Unitary ensembles - global behavior of eigenvalues

We can rewrite

$$\frac{1}{Z_N} \prod_{j < k} (\lambda_j - \lambda_k)^2 \prod_j e^{-NV(\lambda_j)} = \frac{1}{Z_N} e^{-N^2 H(\lambda_1, \dots, \lambda_N)}$$

where

$$H(\lambda_1, \dots, \lambda_N) = \frac{1}{N^2} \sum_{j \neq k} \log \frac{1}{|\lambda_j - \lambda_k|} + \frac{1}{N} \sum_j V(\lambda_j)$$
$$= \iint_{x \neq y} \log \frac{1}{|x - y|} d\mu_N(x) d\mu_N(y) + \int V d\mu_N,$$

$$\mu_N := \mu(q_N) = \frac{1}{N} \sum_k \delta_{\lambda_k}$$

Unitary ensembles - global behavior of eigenvalues

We can rewrite

$$\frac{1}{Z_N} \prod_{j < k} (\lambda_j - \lambda_k)^2 \prod_j e^{-NV(\lambda_j)} = \frac{1}{Z_N} e^{-N^2 H(\lambda_1, \dots, \lambda_N)}$$

where

$$H(\lambda_1, \dots, \lambda_N) = \frac{1}{N^2} \sum_{j \neq k} \log \frac{1}{|\lambda_j - \lambda_k|} + \frac{1}{N} \sum_j V(\lambda_j)$$
$$= \iint_{x \neq y} \log \frac{1}{|x - y|} d\mu_N(x) d\mu_N(y) + \int V d\mu_N,$$

$$\mu_N := \mu(q_N) = \frac{1}{N} \sum_k \delta_{\lambda_k}$$

▶ Thus the most likely eigenvalue configurations $\mu(q_N)$'s should be close to $\mu_V!$

Unitary ensembles and orthogonal polynomials

After some massage, we get that

$$\frac{1}{Z_N} \prod_{j < k} (\lambda_j - \lambda_k)^2 \prod_j e^{-NV(\lambda_j)} = \det(K_N(\lambda_k, \lambda_j))_{1 \le k, j \le n}$$

Unitary ensembles and orthogonal polynomials

After some massage, we get that

$$\frac{1}{Z_N} \prod_{j < k} (\lambda_j - \lambda_k)^2 \prod_j e^{-NV(\lambda_j)} = \det(K_N(\lambda_k, \lambda_j))_{1 \le k, j \le n}$$

where K_N is the correlation kernel

$$K_N(x,y) = e^{-\frac{n}{2}(V(x)+V(y))} \sum_{k=0}^{N-1} p_k(x)p_k(y),$$

 $p_k = p_{N,k}$'s are the orthonormal polynomials for $e^{-NV(x)}dx$,

$$\int p_j(x)p_k(x)e^{-NV(x)}dx = \delta_{jk}.$$

Unitary ensembles and orthogonal polynomials

After some massage, we get that

$$\frac{1}{Z_N} \prod_{j < k} (\lambda_j - \lambda_k)^2 \prod_j e^{-NV(\lambda_j)} = \det(K_N(\lambda_k, \lambda_j))_{1 \le k, j \le n}$$

where K_N is the correlation kernel

$$K_N(x,y) = e^{-\frac{n}{2}(V(x)+V(y))} \sum_{k=0}^{N-1} p_k(x)p_k(y),$$

 $p_k = p_{N,k}$'s are the orthonormal polynomials for $e^{-NV(x)}dx$,

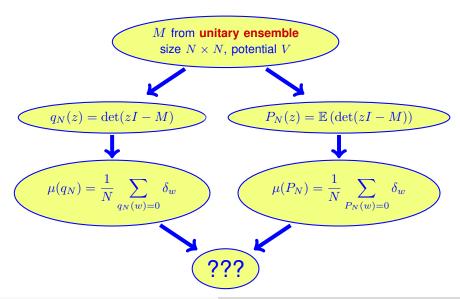
$$\int p_j(x)p_k(x)e^{-NV(x)}dx = \delta_{jk}.$$

Furthermore, for some $h_N > 0$,

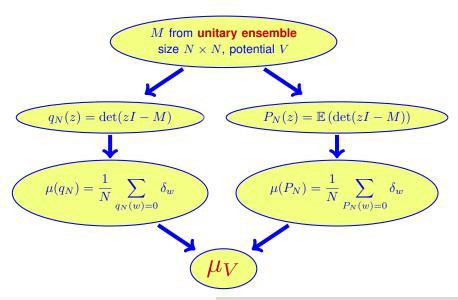
$$\frac{1}{h_N}p_N(x) = P_N(x) = \mathbb{E}\left[\det(Ix - M)\right]$$

Main message: all information is encoded in the OP's!

Back to our original question



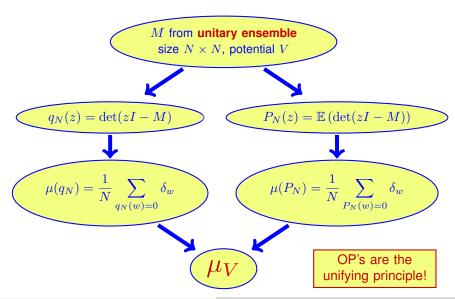
Back to our original question



Guilherme Silva

RMT and zeros of pols

Back to our original question



Guilherme Silva

RMT and zeros of pols

The normal matrix model

Normal matrix model = space of $N \times N$ normal random matrices $(MM^* = M^*M)$ with probability distribution of the form

$$\propto \exp\left(-\frac{N}{t_0}\operatorname{Tr}\mathcal{V}(M)\right)dM$$

for some polynomial $\mathcal{V}(z)$ on z=M and $\bar{z}=M^*$ with $\mathcal{V}(M)=\mathcal{V}(M)^*.$

The normal matrix model

Normal matrix model = space of $N \times N$ normal random matrices $(MM^* = M^*M)$ with probability distribution of the form

$$\propto \exp\left(-\frac{N}{t_0}\operatorname{Tr}\mathcal{V}(M)\right)dM$$

for some polynomial $\mathcal{V}(z)$ on z=M and $\bar{z}=M^*$ with $\mathcal{V}(M)=\mathcal{V}(M)^*$.

▶ Distribution of eigenvalues $(\lambda_1, \dots, \lambda_N) \in \mathbb{C}^N$ is

$$\propto \prod_{j < k} |\lambda_k - \lambda_j|^2 \prod_j e^{-\frac{N}{t_0} \mathcal{V}(\lambda_j)} d\lambda_1 \cdots d\lambda_N$$

The normal matrix model

Normal matrix model = space of $N \times N$ normal random matrices $(MM^* = M^*M)$ with probability distribution of the form

$$\propto \exp\left(-\frac{N}{t_0}\operatorname{Tr}\mathcal{V}(M)\right)dM$$

for some polynomial $\mathcal{V}(z)$ on z=M and $\bar{z}=M^*$ with $\mathcal{V}(M)=\mathcal{V}(M)^*.$

▶ Distribution of eigenvalues $(\lambda_1, \dots, \lambda_N) \in \mathbb{C}^N$ is

$$\propto \prod_{j < k} |\lambda_k - \lambda_j|^2 \prod_j e^{-\frac{N}{t_0} \mathcal{V}(\lambda_j)} d\lambda_1 \cdots d\lambda_N$$

▶ This distribution can again be expressed in terms of OP's, but now for the planar measure $e^{-\frac{N}{t_0}\mathcal{V}(z)}dA(z)$

▶ For the potential

$$V(z) = |z|^2 - 2 \operatorname{Re} V(z), \quad V(z) = \sum_{k=1}^{d} \frac{t_k}{k} z^k,$$

the NMM is connected to Laplacian growth and quadrature domains (Kostov, Krichever, Mineev-Weinstein, Wiegmann and Zabrodin, 2001)

▶ For the potential

$$V(z) = |z|^2 - 2 \operatorname{Re} V(z), \quad V(z) = \sum_{k=1}^{d} \frac{t_k}{k} z^k,$$

the NMM is connected to Laplacian growth and quadrature domains (Kostov, Krichever, Mineev-Weinstein, Wiegmann and Zabrodin, 2001)

▶ For $d \ge 3$ the model is ill-defined

▶ For the potential

$$V(z) = |z|^2 - 2 \operatorname{Re} V(z), \quad V(z) = \sum_{k=1}^{d} \frac{t_k}{k} z^k,$$

the NMM is connected to Laplacian growth and quadrature domains (Kostov, Krichever, Mineev-Weinstein, Wiegmann and Zabrodin, 2001)

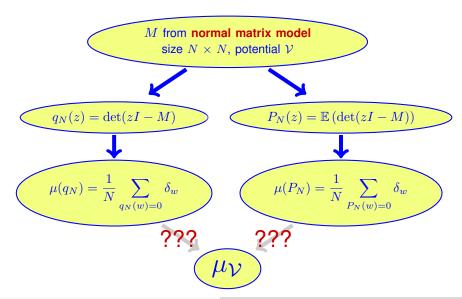
- ▶ For $d \ge 3$ the model is ill-defined
- Instead of considering all normal matrices, Elbau & Felder proposed to consider normal matrices with eigenvalues restricted to lie within a compact $D\subset\mathbb{C}$

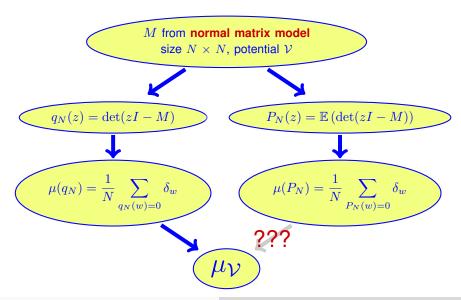
▶ For the potential

$$V(z) = |z|^2 - 2 \operatorname{Re} V(z), \quad V(z) = \sum_{k=1}^{d} \frac{t_k}{k} z^k,$$

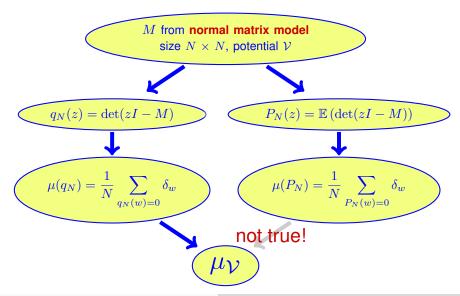
the NMM is connected to Laplacian growth and quadrature domains (Kostov, Krichever, Mineev-Weinstein, Wiegmann and Zabrodin, 2001)

- For d > 3 the model is ill-defined
- Instead of considering all normal matrices, Elbau & Felder proposed to consider normal matrices with eigenvalues restricted to lie within a compact $D\subset\mathbb{C}$
- ▶ At the end of the day, eigenvalue statistics are expected to be independent of specific geometry of D (at least for small t₀)





Guilherme Silva



Guilherme Silva

Set
$$\Omega = \operatorname{supp} \mu_{\mathcal{V}}$$
.

▶ A probability measure μ_* is a mother body for $\mu_{\mathcal{V}}$ if:

- ▶ A probability measure μ_* is a mother body for $\mu_{\mathcal{V}}$ if:
 - $\operatorname{supp} \mu_* \subset \Omega$ and $\operatorname{Area}(\operatorname{supp} \mu_*) = 0$

- ▶ A probability measure μ_* is a mother body for $\mu_{\mathcal{V}}$ if:
 - supp $\mu_* \subset \Omega$ and Area(supp μ_*) = 0
 - $\mathbb{C} \setminus \operatorname{supp} \mu_*$ is connected

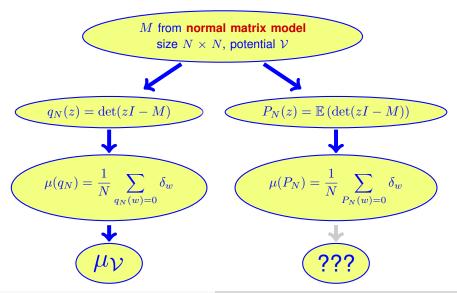
- ▶ A probability measure μ_* is a mother body for $\mu_{\mathcal{V}}$ if:
 - supp $\mu_* \subset \Omega$ and Area(supp μ_*) = 0
 - $\mathbb{C} \setminus \operatorname{supp} \mu_*$ is connected
 - $\int \log \frac{1}{|s-z|} d\mu_{\mathcal{V}}(s) = \int \log \frac{1}{|s-z|} d\mu_{*}(s), \quad z \in \mathbb{C} \setminus \Omega$

- ▶ A probability measure μ_* is a mother body for $\mu_{\mathcal{V}}$ if:
 - supp $\mu_* \subset \Omega$ and Area(supp μ_*) = 0
 - $\mathbb{C} \setminus \operatorname{supp} \mu_*$ is connected

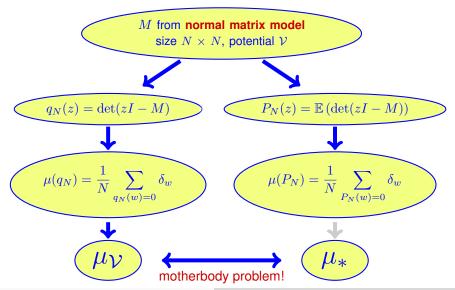
•
$$\int \log \frac{1}{|s-z|} d\mu_{\mathcal{V}}(s) = \int \log \frac{1}{|s-z|} d\mu_*(s), \quad z \in \mathbb{C} \setminus \Omega$$

•
$$\int \log \frac{1}{|s-z|} d\mu_{\mathcal{V}}(s) \le \int \log \frac{1}{|s-z|} d\mu_*(s), \quad z \in \Omega$$

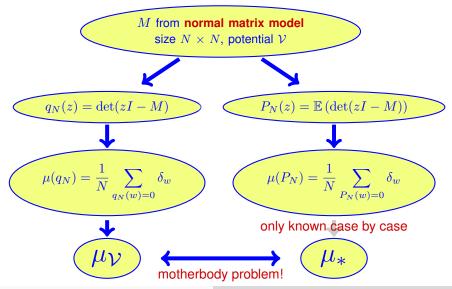
- ▶ A probability measure μ_* is a mother body for $\mu_{\mathcal{V}}$ if:
 - supp $\mu_* \subset \Omega$ and Area(supp μ_*) = 0
 - $\mathbb{C} \setminus \operatorname{supp} \mu_*$ is connected
 - $\int \log \frac{1}{|s-z|} d\mu_{\mathcal{V}}(s) = \int \log \frac{1}{|s-z|} d\mu_*(s), \quad z \in \mathbb{C} \setminus \Omega$
 - $\int \log \frac{1}{|s-z|} d\mu_{\mathcal{V}}(s) \le \int \log \frac{1}{|s-z|} d\mu_*(s), \quad z \in \Omega$
- ▶ Given $\mu_{\mathcal{V}}$, the existence of μ_* is highly nontrivial!



Guilherme Silva



Guilherme Silva



Guilherme Silva

The cubic potential

For now on, we specify to

$$\mathcal{V}(z) = |z|^2 - 2\operatorname{Re}V(z),$$

with

$$V(z) = \frac{z^3}{3} + t_1 z, \quad -\frac{3}{4} < t_1 < \frac{1}{4}$$

The cubic potential

For now on, we specify to

$$\mathcal{V}(z) = |z|^2 - 2\operatorname{Re}V(z),$$

with

$$V(z) = \frac{z^3}{3} + t_1 z, \quad -\frac{3}{4} < t_1 < \frac{1}{4}$$

▶ Symmetric case $t_1 = 0$ studied by Bleher & Kuijlaars (2012)

Mean eigenvalue distribution - computation

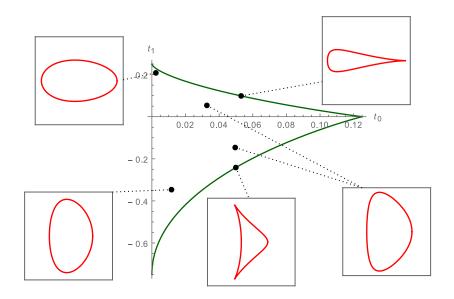
Theorem (Bleher & S., 2017, to appear)

There exists $t_{0,crit} = t_{0,crit}(t_1) > 0$ for which

$$d\mu_{\mathcal{V}}(z) = \frac{1}{\pi t_0} \chi_{\Omega}(z) dA(z), \quad 0 < t_0 < t_{0,crit}$$

and Ω can be explicitly computed (through algebraic conditions on t_0 and t_1)

Phase diagram



Theorem (Bleher & S., 2017, to appear)

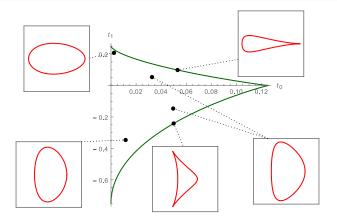
The mother body phase transition - $t_1 = 1/5$

Theorem (Bleher & S., 2017, to appear)

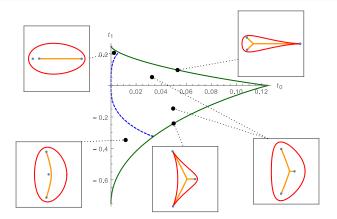
The mother body phase transition - $t_1 = -1/4$

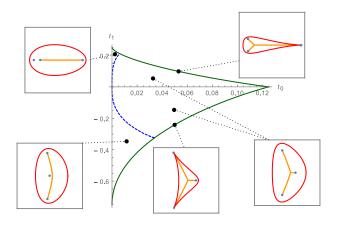
Theorem (Bleher & S., 2017, to appear)

Theorem (Bleher & S., 2017, to appear)

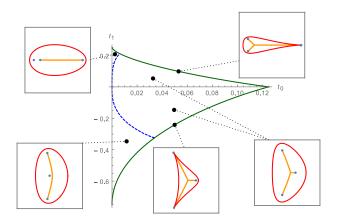


Theorem (Bleher & S., 2017, to appear)





▶ We also verify the convergence $\mu(P_N) \stackrel{*}{\to} \mu_*$ for a regularized P_N



- ▶ We also verify the convergence $\mu(P_N) \stackrel{*}{\to} \mu_*$ for a regularized P_N
- ightharpoonup So in words, the eigenvalues are not sensitive to the phase transition of the zeros of P_N

For some $A=A(t_0,t_1)$ and $B=B(t_0,t_1)$, the pairs of points of the form $(\xi,z)=(h(w^{-1}),h(w)),\ w\in\mathbb{C}$ satisfy an algebraic equation (a.k.a. spectral curve) of the form

$$\xi^3 + z^3 - \xi^2 z^2 - t_1(\xi^2 + z^2) - (1 + t_0)\xi z + B(\xi + z) + A = 0$$

For some $A=A(t_0,t_1)$ and $B=B(t_0,t_1)$, the pairs of points of the form $(\xi,z)=(h(w^{-1}),h(w)),\ w\in\mathbb{C}$ satisfy an algebraic equation (a.k.a. spectral curve) of the form

$$\xi^3 + z^3 - \xi^2 z^2 - t_1(\xi^2 + z^2) - (1 + t_0)\xi z + B(\xi + z) + A = 0$$

▶ Construct a quadratic differential ϖ on the associated Riemann surface $\mathcal R$ and describe its critical graph $\mathcal G$ for $t_1=0$

For some $A=A(t_0,t_1)$ and $B=B(t_0,t_1)$, the pairs of points of the form $(\xi,z)=(h(w^{-1}),h(w)),\ w\in\mathbb{C}$ satisfy an algebraic equation (a.k.a. spectral curve) of the form

$$\xi^3 + z^3 - \xi^2 z^2 - t_1(\xi^2 + z^2) - (1 + t_0)\xi z + B(\xi + z) + A = 0$$

- ▶ Construct a quadratic differential ϖ on the associated Riemann surface $\mathcal R$ and describe its critical graph $\mathcal G$ for $t_1=0$
- ▶ For $t_1 = 0$, embed μ_* on \mathcal{G}

For some $A=A(t_0,t_1)$ and $B=B(t_0,t_1)$, the pairs of points of the form $(\xi,z)=(h(w^{-1}),h(w)),\ w\in\mathbb{C}$ satisfy an algebraic equation (a.k.a. spectral curve) of the form

$$\xi^3 + z^3 - \xi^2 z^2 - t_1(\xi^2 + z^2) - (1 + t_0)\xi z + B(\xi + z) + A = 0$$

- ▶ Construct a quadratic differential ϖ on the associated Riemann surface $\mathcal R$ and describe its critical graph $\mathcal G$ for $t_1=0$
- ▶ For $t_1 = 0$, embed μ_* on \mathcal{G}
- ▶ Deform G with parameter t_1 , keeping track of μ_*

Thank you!