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Orthogonal Polynomials

@ Let i be a finite measure with compact and infinite support in

C.

e By performing Gram-Schmidt orthogonalization to
{1,2,22,7%,...}, we arrive at the sequence of orthonormal

polynomlals {p,,(z, )} n>0 satisfying

/C Pn(z; 1) pm(z; 11)dp(2) = Gnm.

@ The leading coefficient of p, is kn = rkp(p) and satisfies
Ky > 0.



@ The polynomial ppx,
denote by P,(z; 1).

-1

is a monic polynomial, which we will
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Monic Orthogonal Polynomials

e The polynomial p,x,! is a monic polynomial, which we will
denote by P,(z; ).

@ Pp(+; u) satisfies
1Pa(s i)l 2y = inf{l| QI 2y : @ = 2"+ lower order terms},

a property we call the extremal property.



o Let P C L?(u) be the closure of the polynomials.
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o Let P C L?(u) be the closure of the polynomials.

@ The Bergman Shift M,(f)(z) = zf(z) maps P to itself.
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The Bergman Shift

o Let P C L?(u1) be the closure of the polynomials.
@ The Bergman Shift M,(f)(z) = zf(z) maps P to itself.

o If we use the orthonormal polynomials as a basis for P, then
the matrix form of M, is Hessenberg matrix:

Mir M Mz My

M1 My Mz Moy

M,=| 0 Mz Msz Mz
0 0  Miaz My,



@ What is the relationship between the matrix M, and the
corresponding measure?
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Asymptotics of the Bergman Matrix

@ What is the relationship between the matrix M, and the
corresponding measure?

@ In the context of OPRL and OPUC, this is equivalent to
studying properties of the recursion coefficients as n — oc.



Asymptotics of the Bergman Matrix

@ What is the relationship between the matrix M, and the
corresponding measure?

@ In the context of OPRL and OPUC, this is equivalent to
studying properties of the recursion coefficients as n — oc.

@ A common theme in both OPRL and OPUC is studying
stability of the orthonormal polynomials under certain
perturbations of the underlying measure.



o If y is arc-length measure on the unit circle then the Bergman

Shift matrix is just the right shift operator on ¢2(N) and

po(zip) 1
pri1(zip)  z

bl

|z| >0,
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A Simple Example

@ If u is arc-length measure on the unit circle then the Bergman
Shift matrix is just the right shift operator on ¢2(N) and

: 1
M = —, ‘Z‘ > O’ n 2 O
pot1(zip)  z

o If u satisfies 1/(6) > 0 almost everywhere, then the Bergman
Shift matrix converges along its diagonals to the right shift
operator, and

: 1
im Pz _ 1 2] > 1.

nsoo ppi1(zip)  z



Polynomial Lemniscates

@ We will focus on the situation when the measure p is
concentrated near a set of the form

G :={zeC:[Q) <1}

for some monic degree m polynomial @ and a positive real
number r chosen so that each connected component of this
set has smooth boundary.



Polynomial Lemniscates

@ We will focus on the situation when the measure p is
concentrated near a set of the form

G :={zeC:[Q) <1}

for some monic degree m polynomial @ and a positive real
number r chosen so that each connected component of this
set has smooth boundary.

@ This is a natural generalization of OPUC, because the Green's
function is —2 log |Q(2)|.

m



@ Suppose that instead of orthogonalizing the monomials, we
instead perform Gram-Schmidt on the set
{1,Q(2), Q(2)%, Q(2)3,. . .}.
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Polynomial Lemniscates (cont.)

@ Suppose that instead of orthogonalizing the monomials, we
instead perform Gram-Schmidt on the set

{1,Q(2). Q(2)%, Q(2)%, .. .}.

o If u is the equilibrium measure for G,, then this set is already
orthogonal, so the matrix Mg(,) with respect to this basis (for
some subspace) is just a multiple of the right shift operator R.



Polynomial Lemniscates (cont.)

@ Suppose that instead of orthogonalizing the monomials, we
instead perform Gram-Schmidt on the set

{1,Q(2). Q(2)%, Q(2)%, .. .}.

o If u is the equilibrium measure for G,, then this set is already
orthogonal, so the matrix Mg(,) with respect to this basis (for
some subspace) is just a multiple of the right shift operator R.

@ If we fill in this basis with good polynomial approximations to
{{/Q(z)"}n>1 and orthogonalize, then we expect the
resulting matrix Mg(;) = Q(M;) to be very close to a
multiple of R™.



Polynomial Lemniscates (cont.)

@ Suppose that instead of orthogonalizing the monomials, we
instead perform Gram-Schmidt on the set

{1,Q(2). Q(2)%, Q(2)%, .. .}.

o If u is the equilibrium measure for G,, then this set is already
orthogonal, so the matrix Mg(,) with respect to this basis (for
some subspace) is just a multiple of the right shift operator R.

@ If we fill in this basis with good polynomial approximations to
{ ¥/ Q(z)"}n>1 and orthogonalize, then we expect the
resulting matrix Mg(;) = Q(M;) to be very close to a
multiple of R™.

@ In some sense we can understand a general measure p on G,
as a perturbation of the equilibrium measure by observing
similarities of Q(M;) and a multiple of a power of R.



Isospectral Torus

o If supp(u) C R

b1 dl 0 0

al b2 an 0

J = 0 an b3 as
0

0 as b4

@ In the context of OPRL, one can easily identify the essential
spectrum of the matrix J if the diagonals of J are g-periodic.



terms of the entries of J.

@ The essential spectrum is given by e := A™%([~2,2]) for an
appropriate polynomial A - called the discriminant - defined in
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Convergence to the Isospectral Torus

@ The essential spectrum is given by e := A~1([-2,2]) for an
appropriate polynomial A - called the discriminant - defined in
terms of the entries of J.

@ The map from g-periodic sequences to the polynomial A is far
from injective. The preimage of a particular discriminant is
known as the isospectral torus of e.



Convergence to the Isospectral Torus

@ The essential spectrum is given by e := A~1([-2,2]) for an
appropriate polynomial A - called the discriminant - defined in
terms of the entries of J.

@ The map from g-periodic sequences to the polynomial A is far
from injective. The preimage of a particular discriminant is
known as the isospectral torus of e.

@ A right limit of the matrix J is a doubly infinite matrix Jy
such that the sequence L"JR" converges to Jy pointwise as
n — oo through some subsequence.



Convergence to the Isospectral Torus

@ The essential spectrum is given by e := A~1([-2,2]) for an
appropriate polynomial A - called the discriminant - defined in
terms of the entries of J.

@ The map from g-periodic sequences to the polynomial A is far
from injective. The preimage of a particular discriminant is
known as the isospectral torus of e.

@ A right limit of the matrix J is a doubly infinite matrix Jy
such that the sequence L"JR" converges to Jy pointwise as
n — oo through some subsequence.

@ We say that J converges to the isospectral torus of e precisely
when every right limit of J is in the isospectral torus of e.



Convergence to the Isospectral Torus (continued)

Magic Formula (Damanik, Killip, & Simon, 2010)

Let Jy be a two-sided g-periodic Jacobi matrix with discriminant
Ag and essential spectrum egy. If J1 is another two-sided Jacobi
matrix, then Jy is in the isospectral torus of ey if and only if
No(J1) = L9+ RA.




Convergence to the Isospectral Torus (continued)

Magic Formula (Damanik, Killip, & Simon, 2010)

Let Jy be a two-sided g-periodic Jacobi matrix with discriminant
Ag and essential spectrum egy. If J1 is another two-sided Jacobi
matrix, then Jy is in the isospectral torus of ey if and only if
No(J1) = L9+ RA.

@ J converges to the isospectral torus for eg if and only if every
right limit J of J satifsies Ag(J) = L9 + RY.



Convergence to the Isospectral Torus (continued)

Magic Formula (Damanik, Killip, & Simon, 2010)

Let Jy be a two-sided g-periodic Jacobi matrix with discriminant
Ag and essential spectrum egy. If J1 is another two-sided Jacobi
matrix, then Jy is in the isospectral torus of ey if and only if
No(J1) = L9+ RA.

@ J converges to the isospectral torus for eg if and only if every
right limit J of J satifsies Ag(J) = L9 + RY.
Theorem (Last & Simon, 2006)

If J converges to the isospectral torus for ey, then the essential
support of the spectral measure for J is eg.




Convergence to the Isospectral Torus (continued)

Corollary

Suppose A is the discriminant of a g-periodic Jacobi matrix and
eo = Ay ([-2,2]). If

then the essential support of the spectral measure for J is ep.




Convergence to the Isospectral Torus (continued)

Corollary

Suppose A is the discriminant of a g-periodic Jacobi matrix and
eo = Ay ([-2,2]). If

then the essential support of the spectral measure for J is ep.

@ If the matrix J satisfies a certain asymptotic polynomial
condition, then we deduce a similarity between the measure p
and the equilibrium measure for {x : |Re[Ag(x)]| < 2}.



@ The measures {|pn(z; 11)|2du(z)}nen are all probability

measures with support in a fixed compact set. Any weak limit
is called a weak asymptotic measure.
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Weak Asymptotic Measures

e The measures {|pn(z; 11)|?dp(z)} nen are all probability
measures with support in a fixed compact set. Any weak limit
is called a weak asymptotic measure.

@ Recall the extremal property

| Pn(+; M)HL2(M) = inf{HQHp(u) : Q = z"+ lower order terms},



Weak Asymptotic Measures

e The measures {|pn(z; 11)|?dp(z)} nen are all probability
measures with support in a fixed compact set. Any weak limit
is called a weak asymptotic measure.

@ Recall the extremal property

| Pn(+; M)HL2(M) = inf{HQHp(u) : Q = z"+ lower order terms},

@ The weak asymptotic measures reflect how effectively the
orthonormal polynomials are able to “smooth out” the
measure 4.



Weak Asymptotic Measures

e The measures {|pn(z; 11)|?dp(z)} nen are all probability
measures with support in a fixed compact set. Any weak limit
is called a weak asymptotic measure.

@ Recall the extremal property

| Pn(+; M)HL2(M) = inf{HQHp(u) : Q = z"+ lower order terms},

@ The weak asymptotic measures reflect how effectively the
orthonormal polynomials are able to “smooth out” the
measure 4.

@ The support of a weak asymptotic measure is concentrated
near that portion of the measure that the orthonormal
polynomials are least able to suppress.



Analog for General Measures

@ An analog of the corollary exists for general measures.

Theorem (S., to appear in Constr. Approx.)

Let Q(z) be a monic polynomial of degree m and let G be a
banded Toeplitz matrix of width m. Suppose that the operators
{(Q(M,) — G)R"}nen converge strongly to zero as n — oo and

1/n

lim (16" e(ns3ymll) " = r




Analog for General Measures

@ An analog of the corollary exists for general measures.

Theorem (S., to appear in Constr. Approx.)

Let Q(z) be a monic polynomial of degree m and let G be a
banded Toeplitz matrix of width m. Suppose that the operators
{(Q(M,) — G)R"}nen converge strongly to zero as n — oo and

1/n

lim (16" e(ns3ymll) " = r

Then every weak asymptotic measure vy is supported on

{z:|Q(2)| < r} and supp(y) N{z : |Q(2)| = r} # 0.




@ The strong convergence result easily implies
I(Q(M,)k — G)e,|| — 0 as n — oo for every k € N.
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@ The strong convergence result easily implies

I(Q(M,)k — G)e,|| — 0 as n — oo for every k € N.
@ It follows that

Tim [ Q(M.)¥ e = lim_[[G*enl| = [G*e(scymll-
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@ The strong convergence result easily implies

I(Q(M,)k — G)e,|| — 0 as n — oo for every k € N.
@ It follows that

@ However

Tim [ Q(M.)¥ e = lim_[[G*enl| = [G*e(scymll-

Jim QM) enl = im [ 1Q(2) pr-a(zi )P dn(2)
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@ Now take n — oo through A/ C N so the measures
|pn_1(z; 11)|?dp(z) converge weakly to 7.
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Proof (continued)

@ Now take n — oo through A/ C N so the measures
|pn_1(z; 1t)|?dp(z) converge weakly to 7.

e If 3> rissuch that v({z : |Q(z)| > B}) =t > 0, then we
would have
1G* e(ki3ymll® > Bt

which is a contradiction when k is large.



Proof (continued)

@ Now take n — oo through A/ C N so the measures
|pn_1(z; 1t)|?dp(z) converge weakly to 7.

e If 3> rissuch that v({z : |Q(z)| > B}) =t > 0, then we
would have
1G* e(ki3ymll® > Bt

which is a contradiction when k is large.

e If 3 < rissuch that v({z: |Q(z)| < 8}) =1, then we would
have
1G" ek 3ymll* < B2

which is a contradiction for large k.



Necessary and Sufficient Conditions

Theorem (S., to appear in Constr. Approx.)
Let u be a finite measure with compact and infinite support and
let Q be a polynomial of degree m > 1. Fix r > 0. The matrices
{(Q(M;) — rR™)R"} hen converge strongly to 0 as n — oo if and
only if both of the following conditions are satisfied:

i) limp_eo K,nli;im =r,

ii) every weak asymptotic measure is supported on

{z:1Q(z)| = r}.




Necessary and Sufficient Conditions

Theorem (S., to appear in Constr. Approx.)
Let u be a finite measure with compact and infinite support and
let Q be a polynomial of degree m > 1. Fix r > 0. The matrices
{(Q(M;) — rR™)R"} hen converge strongly to 0 as n — oo if and
only if both of the following conditions are satisfied:

i) limp_eo K,nli;im =r,

ii) every weak asymptotic measure is supported on

{z:1Q(z)| = r}.

@ The theorem applies to area measure on a polynomial
lemniscate.




Summary

@ We can study general measures in the complex plane from a
perturbative viewpoint by examining the structure of the
Bergman Shift matrix.

@ In particular we can characterize those measures that are very
heavily concentrated near the boundary of a polynomial
lemniscate.

@ For OPRL, a very nice result of this kind exists in the form of
the Magic Formula.

@ Our conclusion comes in the form of a statement about the
supports of the weak asymptotic measures.



