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Orthogonal Polynomials

Let µ be a finite measure with compact and infinite support in
C.

By performing Gram-Schmidt orthogonalization to
{1, z , z2, z3, . . .}, we arrive at the sequence of orthonormal
polynomials {pn(z ;µ)}n≥0 satisfying∫

C
pn(z ;µ)pm(z ;µ)dµ(z) = δnm.

The leading coefficient of pn is κn = κn(µ) and satisfies
κn > 0.



Monic Orthogonal Polynomials

The polynomial pnκ
−1
n is a monic polynomial, which we will

denote by Pn(z ;µ).

Pn(·;µ) satisfies

‖Pn(·;µ)‖L2(µ) = inf{‖Q‖L2(µ) : Q = zn + lower order terms},

a property we call the extremal property.
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The Bergman Shift

Let P ⊆ L2(µ) be the closure of the polynomials.

The Bergman Shift Mz(f )(z) = zf (z) maps P to itself.

If we use the orthonormal polynomials as a basis for P, then
the matrix form of Mz is Hessenberg matrix:

Mz =


M11 M12 M13 M14 · · ·
M21 M22 M23 M24 · · ·

0 M32 M33 M34 · · ·
0 0 M43 M44 · · ·
...

...
...

...
. . .
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Asymptotics of the Bergman Matrix

What is the relationship between the matrix Mz and the
corresponding measure?

In the context of OPRL and OPUC, this is equivalent to
studying properties of the recursion coefficients as n→∞.

A common theme in both OPRL and OPUC is studying
stability of the orthonormal polynomials under certain
perturbations of the underlying measure.
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A Simple Example

If µ is arc-length measure on the unit circle then the Bergman
Shift matrix is just the right shift operator on `2(N) and

pn(z ;µ)

pn+1(z ;µ)
=

1

z
, |z | > 0, n ≥ 0

If µ satisfies µ′(θ) > 0 almost everywhere, then the Bergman
Shift matrix converges along its diagonals to the right shift
operator, and

lim
n→∞

pn(z ;µ)

pn+1(z ;µ)
=

1

z
, |z | > 1.
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Polynomial Lemniscates

We will focus on the situation when the measure µ is
concentrated near a set of the form

Gr := {z ∈ C : |Q(z)| ≤ r}

for some monic degree m polynomial Q and a positive real
number r chosen so that each connected component of this
set has smooth boundary.

This is a natural generalization of OPUC, because the Green’s
function is − 1

m log |Q(z)|.
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Polynomial Lemniscates (cont.)

Suppose that instead of orthogonalizing the monomials, we
instead perform Gram-Schmidt on the set
{1,Q(z),Q(z)2,Q(z)3, . . .}.

If µ is the equilibrium measure for Gr , then this set is already
orthogonal, so the matrix MQ(z) with respect to this basis (for
some subspace) is just a multiple of the right shift operator R.

If we fill in this basis with good polynomial approximations to
{ m
√
Q(z)n}n≥1 and orthogonalize, then we expect the

resulting matrix MQ(z) = Q(Mz) to be very close to a
multiple of Rm.

In some sense we can understand a general measure µ on Gr

as a perturbation of the equilibrium measure by observing
similarities of Q(Mz) and a multiple of a power of R.
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Isospectral Torus

If supp(µ) ⊆ R

J =


b1 a1 0 0 · · ·
a1 b2 a2 0 · · ·
0 a2 b3 a3 · · ·
0 0 a3 b4 · · ·
...

...
...

...
. . .


In the context of OPRL, one can easily identify the essential
spectrum of the matrix J if the diagonals of J are q-periodic.



Convergence to the Isospectral Torus

The essential spectrum is given by e := ∆−1([−2, 2]) for an
appropriate polynomial ∆ - called the discriminant - defined in
terms of the entries of J.

The map from q-periodic sequences to the polynomial ∆ is far
from injective. The preimage of a particular discriminant is
known as the isospectral torus of e.

A right limit of the matrix J is a doubly infinite matrix J0
such that the sequence LnJRn converges to J0 pointwise as
n→∞ through some subsequence.

We say that J converges to the isospectral torus of e precisely
when every right limit of J is in the isospectral torus of e.
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Convergence to the Isospectral Torus (continued)

Magic Formula (Damanik, Killip, & Simon, 2010)

Let J0 be a two-sided q-periodic Jacobi matrix with discriminant
∆0 and essential spectrum e0. If J1 is another two-sided Jacobi
matrix, then J1 is in the isospectral torus of e0 if and only if
∆0(J1) = Lq +Rq.

J converges to the isospectral torus for e0 if and only if every
right limit J̃ of J satifsies ∆0(J̃) = Lq +Rq.

Theorem (Last & Simon, 2006)

If J converges to the isospectral torus for e0, then the essential
support of the spectral measure for J is e0.
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Convergence to the Isospectral Torus (continued)

Corollary

Suppose ∆0 is the discriminant of a q-periodic Jacobi matrix and
e0 = ∆−10 ([−2, 2]). If

lim
n→∞

(∆0(LnJRn))j ,k = (Lq +Rq)j ,k , j , k ∈ Z,

then the essential support of the spectral measure for J is e0.

If the matrix J satisfies a certain asymptotic polynomial
condition, then we deduce a similarity between the measure µ
and the equilibrium measure for {x : |Re[∆0(x)]| ≤ 2}.
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Weak Asymptotic Measures

The measures {|pn(z ;µ)|2dµ(z)}n∈N are all probability
measures with support in a fixed compact set. Any weak limit
is called a weak asymptotic measure.

Recall the extremal property

‖Pn(·;µ)‖L2(µ) = inf{‖Q‖L2(µ) : Q = zn + lower order terms},

The weak asymptotic measures reflect how effectively the
orthonormal polynomials are able to “smooth out” the
measure µ.

The support of a weak asymptotic measure is concentrated
near that portion of the measure that the orthonormal
polynomials are least able to suppress.
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Analog for General Measures

An analog of the corollary exists for general measures.

Theorem (S., to appear in Constr. Approx.)

Let Q(z) be a monic polynomial of degree m and let G be a
banded Toeplitz matrix of width m. Suppose that the operators
{(Q(Mz)− G)Rn}n∈N converge strongly to zero as n→∞ and

lim
n→∞

(
‖Gne(n+3)m‖

)1/n
= r .

Then every weak asymptotic measure γ is supported on
{z : |Q(z)| ≤ r} and supp(γ) ∩ {z : |Q(z)| = r} 6= ∅.
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Proof

The strong convergence result easily implies
‖(Q(Mz)k − Gk)en‖ → 0 as n→∞ for every k ∈ N.

It follows that

lim
n→∞

‖Q(Mz)ken‖ = lim
n→∞

‖Gken‖ = ‖Gke(k+3)m‖.

However

lim
n→∞

‖Q(Mz)ken‖2 = lim
n→∞

∫
|Q(z)kpn−1(z ;µ)|2dµ(z).
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Proof (continued)

Now take n→∞ through N ⊆ N so the measures
|pn−1(z ;µ)|2dµ(z) converge weakly to γ.

If β > r is such that γ({z : |Q(z)| > β}) = t > 0, then we
would have

‖Gke(k+3)m‖2 > β2kt,

which is a contradiction when k is large.

If β < r is such that γ({z : |Q(z)| ≤ β}) = 1, then we would
have

‖Gke(k+3)m‖2 ≤ β2k ,

which is a contradiction for large k.
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Necessary and Sufficient Conditions

Theorem (S., to appear in Constr. Approx.)

Let µ be a finite measure with compact and infinite support and
let Q be a polynomial of degree m ≥ 1. Fix r > 0. The matrices
{(Q(Mz)− rRm)Rn}n∈N converge strongly to 0 as n→∞ if and
only if both of the following conditions are satisfied:

i) limn→∞ κnκ
−1
n+m = r ,

ii) every weak asymptotic measure is supported on
{z : |Q(z)| = r}.

The theorem applies to area measure on a polynomial
lemniscate.
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Summary

We can study general measures in the complex plane from a
perturbative viewpoint by examining the structure of the
Bergman Shift matrix.

In particular we can characterize those measures that are very
heavily concentrated near the boundary of a polynomial
lemniscate.

For OPRL, a very nice result of this kind exists in the form of
the Magic Formula.

Our conclusion comes in the form of a statement about the
supports of the weak asymptotic measures.


