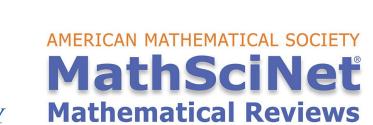
On Lagrange polynomials in approximating planar sets by Julia sets



Leokadia Bialas-Ciez (Poland), Marta Kosek (Poland), Margaret Stawiska-Friedland (USA)

Interpolation polynomials

Let $n \in \mathbb{N}$ and $E \subset \mathbb{C}$ be compact. Consider an array A of distinct points in E, i.e. $A = \{\zeta^{(n)} : n \ge 1\}$ where $\zeta^{(n)} = \{\zeta^{(n)}_0, ..., \zeta^{(n)}_n\}$, $n \in \mathbb{N}$, is an (n+1)-tuple of distinct points in E. Fix $j \in \{0,1,...,n\}$. We put

- $V(\zeta^{(n)}) = \prod_{0 \le l < k \le n} \left| \zeta_l^{(n)} \zeta_k^{(n)} \right|.$
- $\Delta^{(j)}(\zeta^{(n)}) := \prod_{k \in \{0,...,n\} \setminus \{j\}} \left(\zeta_j^{(n)} \zeta_k^{(n)}\right);$
- $L^{(j)}(z,\zeta^{(n)}) := (\Delta^{(j)}(\zeta^{(n)}))^{-1} \cdot \prod_{k \in \{0,...,n\} \setminus \{j\}} (z \zeta_k^{(n)}).$

 $L^{(j)}(\cdot,\zeta^{(n)})$ is the j-th fundamental Lagrange interpolation polynomial with nodes $\zeta^{(n)}$.

Some convergence results

Let $A = \{\zeta^{(n)} : n \ge 1\}$ be an array of distinct points in a compact set E. The n-th Lebesgue constant is defined by the formula

$$\Lambda_n(E,\zeta^{(n)}) := \max_{z \in E} \sum_{j=0}^n |L^{(j)}(z,\zeta^{(n)})|.$$

Let E be polynomially convex regular compact set and

$$\lim_{n \to \infty} \Lambda_n(E, \zeta^{(n)})^{1/n} = 1. \tag{1}$$

This condition implies nice interpolation properties, e.g. if f is holomorphic in a neighbourhood of E, its interpolation polynomials with nodes $\zeta^{(n)}$ converge uniformly (and fast) on E to f.

Main Theorem 1 ([BCKS]) Let E be a polynomially convex regular compact set in \mathbb{C} and $A = \{\zeta^{(n)} : n \geq 1\}$ an array of distinct points in E. Then $(\ref{eq:convex})$ is equivalent to

$$\lim_{n \to \infty} \min_{k \in \{0, \dots, n\}} |\Delta^{(k)}(\zeta^{(n)})|^{1/n} = \operatorname{cap} E.$$
 (2)

Fix $j = j_n \in \{0, ..., n\}$ such that $|\Delta^{(j_n)}(\zeta^{(n)})| = \min_k |\Delta^{(k)}(\zeta^{(n)})|$. Put $L_n := L^{(j_n)}(\cdot, \zeta^{(n)})$.

Theorem 2 ([BCKS]) Let E be a polynomially convex regular compact subset of \mathbb{C} and ω be a modulus of continuity of g_E . Let $\{\zeta^{(n)}: n \geq 1\}$ be an array of distinct points from E such that $(\ref{eq:continuity})$ holds and let L_n be defined as above. If $\operatorname{dist}(z,E) \geq 1/n^2$ and $\Theta(E) := (2 + \operatorname{diam} E)^{1/3}$, then

$$\frac{1}{n}\log\frac{1}{||L_n||_E} \le g_E(z) - \log\sqrt[n]{|L_n(z)|} \le \frac{3}{n}\log[(n+1)\Theta(E)] + \omega\left(\frac{1}{n^2}\right).$$

Moreover, the expression on the left hand side tends to 0.

Pseudo Leja sequences

Definition (Bialas-Ciez, Calvi (2012)) Let $(C_n)_{n=1}^{\infty}$ be a sequence of real numbers such that $\lim_{n\to\infty} (C_n)^{1/n} = 1$. A sequence $(a_n)_{n=0}^{\infty}$ of points in E is said to be a pseudo Leja sequence (of Edrei growth (C_n)) if a_0 is an arbitrary point of E and a_n is such a point in E that

$$C_n |w_n(a_n)| \ge \max_{z \in E} |w_n(z)|, \qquad w_n(z) := \prod_{j=0}^{n-1} (z - a_j).$$

For $C_n \equiv 1$ we get a classical Leja sequence.

Theorem 3 ([BCKS]) Let E be compact such that $\partial \widehat{E}$ is a finite union of C^2 arcs. Let $(a_n)_{n=0}^{\infty}$ in $\partial \widehat{E}$ be a pseudo Leja sequence of bounded Edrei growth (C_n) . Then $\lim_{n\to\infty} \Lambda_n(E,a^{(n)})^{1/n}=1$, where $a^{(n)}=\{a_0,...,a_n\}$.

The reference and contact details

[BCKS] L. Bialas-Ciez (UJ, Poland), M. Kosek (UJ, Poland), M. Stawiska (MR, USA), On Lagrange polynomials and the rate of approximation of planar sets by polynomial Julia sets, submitted, arXiv:1709.06630v2

UJ=Jagiellonian University, Kraków; MR=Mathematical Reviews e-mails of the corresponding authors:

Marta.Kosek@im.uj.edu.pl, stawiska@umich.edu

The Green function

Let $E \subset \mathbb{C}$ be compact. The polynomially convex hull of E is

$$\widehat{E} = \left\{ z \in \mathbb{C} : |p(z)| \le ||p||_E := \max_{w \in E} |p(w)| \text{ for every polynomial } p \right\}.$$

E is polynomially convex if $E = \widehat{E}$.

E is regular if its Green function g_E exists. This is the unique function such that $g_E \equiv 0$ on \widehat{E} ; g_E is harmonic and positive in $\mathbb{C} \setminus \widehat{E}$; $g_E(z) \to 0$ as $z \to \partial D$ and $g_E(z) - \log |z|$ tends to a finite number γ as $z \to \infty$. It is known that $\operatorname{cap} E = \exp(-\gamma)$ and

$$g_E = \log \Phi_E(z)$$
 with $\Phi_E(z) := \sup_p |p(z)|^{1/\deg p}, z \in \mathbb{C}^N,$

where the supremum is taken over all non-constant polynomials such that $||p||_E \le 1$.

Approximation of planar sets by Julia sets

If $P:\mathbb{C}\to\mathbb{C}$ is a polynomial then

$$\mathcal{K}(P) := \{ z \in \mathbb{C} : (P^n(z))_{n=1}^{\infty} \text{ is bounded} \}$$

is its filled-in Julia set and $\mathcal{J}(P) = \partial \mathcal{K}(P)$ its Julia set. If $\deg P \geq 2$, then $\mathcal{K}(P)$ is a polynomially convex regular compact set.

Theorem 4 (Lindsey, Younsi (2016)) Let $E \subset \mathbb{C}$ be any nonempty compact set with connected complement. Then for any $\varepsilon > 0$ there exists a polynomial P such that $\chi(E, \mathcal{K}(P)) < \varepsilon, \quad \chi(\partial E, \mathcal{J}(P)) < \varepsilon,$

where χ denotes the Hausdorff metric.

On the approximation rate in the Klimek metric

Let $E, F \subset \mathbb{C}$ be regular. We define Klimek's metric $\Gamma(E, F) := \max(||g_E||_F, ||g_F||_E)$ (the family of all polynomially convex regular sets with Γ is a complete metric space).

Assume that $0 \in E$. Let $s_n = (3/n) \log((n+1)/(\text{diam}E + 2))$ and let $\eta^{(n)}$ be a Fekete (extremal) (n+1)-tuple for $\{z \in \mathbb{C} : g_E(z) \leq s_n\}$ (i.e., an (n+1)-tuple maximizing $V(\zeta^{(n)})$ in this set). We order the points of $\eta^{(n)}$ so that $|\Delta^{(0)}(\eta^{(n)})| \leq \min_{j \in \{1, \dots, n\}} |\Delta^{(j)}(\eta^{(n)})|$.

Proposition 5 ([BCKS]) Let E be a compact subset of \mathbb{C} such that g_E is Hölder continuous with the constant A and the exponent $\alpha \in (0,1]$. Put

- $P_n(z) = z(n+1)^{-(A+4)}L^{(0)}(z,\eta^{(n)})$ if $\alpha \in [1/2,1];$
- $P_n(z) = z \exp\left(-(A+4)n^{1-2\alpha}\right) L^{(0)}(z,\eta^{(n)})$ if $\alpha \in (0,1/2)$.

Then for n large enough,

- $\Gamma(E, \mathcal{K}(P_n)) \le (3A+12)n^{-1}\log(n+1)$ if $\alpha \in [1/2; 1]$;
- $\Gamma(E, \mathcal{K}(P_n)) \le (3A+12)n^{-2\alpha}$ if $\alpha \in (0; 1/2)$.

On the approximation rate in the Hausdorff metric

We say that a regular compact set E satisfies the Łojasiewicz-Siciak condition if for any bounded neighbourhood U of E there exist positive constants B,β such that

$$g_E(z) \ge B(\operatorname{dist}(z, E))^{\beta}, \qquad z \in U.$$

Proposition 6 ([BCKS]) Let E be a compact set satisfying the Łojasiewicz-Siciak condition. Assume also that the Green function g_E is Hölder continuous with exponent $\alpha \in (0,1]$.

Then there exist positive constants C, κ , depending only on the set E and, for each $n \in \mathbb{N}$, large enough, a polynomial P_n of degree n+1 such that

- $\chi(E, \mathcal{K}(P_n)) \leq C \left(n^{-1} \log(n+1)\right)^{\kappa}$ if $\alpha \in [1/2; 1]$;
- $\chi(E, \mathcal{K}(P_n)) \leq Cn^{-2\alpha\kappa}$ if $\alpha \in (0; 1/2)$.

One can take here polynomial P_n from Proposition ??. Instead of Fekete points in E it is also possible to use a suitable pseudo Leja sequence in the level set $\{z \in \mathbb{C} : g_E(z) = \tau_n\}$ (if τ_n is small and appropriately chosen).