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Motivations

Calderón-Zygmund Operators
Intuition and Definition

• Singular integrals are central to complex analysis and harmonic
analysis and are intimately connected with the study of partial
differential equations.

• A singular integral is an integral operator

T (f)(x) =
∫
Rd
K(x, y)f(y) dy

where the kernel function K(x, y) : Rd × Rd → R is singular along
the diagonal x = y.
• Typical conditions on the kernel are:

|K(x, y)| ≤ C

|x− y|d
and |∇xK(x, y)|+ |∇yK(x, y)| ≤ C

|x− y|d+1 .
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Motivations

Calderón-Zygmund Operators
Properties and Examples

• Under the hypotheses above, when 1 < p <∞, the operator T is
bounded on all Lp(Rd).

• Fails to be bounded on L1(Rd) and L∞(Rd).
• The Hilbert transform is the prototype for all Calderón-Zygmund

operators:
Hf(x) =

∫
R

f(y)
y − x

dy.

Plays an important role in complex analysis and harmonic
analysis.

• Riesz transforms are the d-dimensional analogue of the Hilbert
transform.

Strong connection to the Laplacian. For 1 ≤ j ≤ d
denote the Riesz transform in the jth variable by

Rj(f)(x) =
∫
Rd

xj − yj
|x− y|d+1 f(y) dy.
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Motivations

Formulation and Set up of the Problem
• For 0 ≤ λ < d we define a smooth λ-fractional Calderón-Zygmund

kernel Kλ(x, y) to be a function Kλ : Rd × Rd → R satisfying the
following fractional size and smoothness conditions

∣∣∣∇jxKλ (x, y)
∣∣∣+ ∣∣∣∇jyKλ (x, y)

∣∣∣ ≤ Cλ,j |x− y|λ−j−d , 0 ≤ j <∞.

• Denote by T λ the associated λ-fractional singular integral on Rd.

The case of λ = 0 corresponds to classical Calderón-Zygmund
kernels.

Question (Motivating Question)
Find necessary and sufficient conditions on a pair of weights σ and ω
and a smooth λ-fractional singular integral operator T λ on Rd to
characterize when it satisfies the following two weight norm inequality∥∥∥T λ(σf)

∥∥∥
Lp(Rd,ω) ≤ NTλ,p (σ, ω) ‖f‖Lp(Rd,σ) .
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Motivations Major Contributions

Previous Work
Well studied problem in harmonic analysis:

• When σ = ω = dx then this question is related to the famous T1
Theorem of David and Journé from 1984.
• For non-negative operators, different than Calderón-Zygmund

operators, the problem was resolved by E. Sawyer in 1989.
• Late 1990s/early 2000s Nazarov, Treil and Volberg (NTV) studied

the problem for the Hilbert transform and formulated a conjecture
about the Hilbert Transform acting between L2(σ) to L2(ω).
• NTV Conjecture was resolved by Lacey, Sawyer, Shen,

Uriarte-Tuero and Lacey in a two part paper in 2010s. Point
masses in the measures were removed by Hytönen afterwards.
• Work by Lacey, Sawyer, Shen, Uriarte-Tuero, W. and others

studying variants of this problem for different Calderón-Zygmund
operators and classes of weights.
• Dyadic (discrete) variants studied by NTV, Hytönen, Vuorinen,

and others.
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Motivations Applications to Function Spaces

The Model Space
• Let H2 denote the Hardy space on the unit disc D;

• Let ϑ denote an inner function on D:

|ϑ(ξ)| = 1 a.e. ξ ∈ T.
• Let Kϑ = H2 	 ϑH2.
• This is a reproducing kernel Hilbert space with kernel:

Kλ(z) = 1− ϑ(λ)ϑ(z)
1− λz

.

Question (Carleson Measure Problem for Kϑ)
Geometrically/function theoretically characterize the Carleson
measures for Kϑ:∫

D
|f(z)|2 dµ(z) ≤ C(µ)2 ‖f‖2Kϑ ∀f ∈ Kϑ.
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Motivations Prior and Related Results

Carleson Measures for Kϑ

• We always have the necessary condition:

∫
D

∣∣∣1− ϑ(λ)ϑ(z)
∣∣∣2∣∣∣1− λz∣∣∣2 dµ(z) ≤ C(µ)2 ‖Kλ‖2Kϑ ∀λ ∈ D.

• If ϑ is a one-component inner function:

Namely,

Ω(ε) ≡ {z ∈ D : |ϑ(z)| < ε}, 0 < ε < 1

is connected for some ε:
• Cohn proved that µ is a Kϑ-Carleson measure if and only if the

testing conditions hold for Carleson boxes that intersect Ω(ε).
• Treil and Volberg gave an alternate proof of this which also works

for 1 < p <∞.

• Nazarov and Volberg proved the obvious necessary condition is not
sufficient for µ to be a Kϑ-Carleson measure.
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Motivations A Related Question in Harmonic Analysis

The Two-Weight Cauchy Transform
• Let σ denote a measure on R.

• Let τ denote a measure on R2
+.

• For f ∈ L2(R, σ), the Cauchy transform will be

C(σf)(z) =
∫
R

f(w)
w − z

σ(dw).

• Let σ denote a measure on T.

• Let τ denote a measure on D.

• For f ∈ L2(T, σ), the Cauchy transform will be

C(σf)(z) =
∫
T

f(w)
1− wzσ(dw).
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Motivations A Related Question in Harmonic Analysis

Connecting Carleson Measures to the Cauchy Transform
• Associate to ϑ and α ∈ T a measure σα such that:

Re
(
α+ ϑ(z)
α− ϑ(z)

)
=
∫
T

1− |z|2∣∣∣1− ξz∣∣∣2 dσα(ξ).

Let σ ≡ σ1 denote the Clark measure on T.

• Then L2(T;σ) is unitarily equivalent to Kϑ via a unitary U .
• U∗ : L2(T;σ)→ Kϑ has the integral representation given by

U∗f(z) ≡ (1− ϑ(z))
∫
T

f(ξ)
1− ξz

σ(dξ).

• For the inner function ϑ and measure µ, define a new measure
νϑ,µ ≡ |1− ϑ|2µ.

Theorem (Nazarov, Volberg, (2002))
A measure µ is a Carleson measure for Kϑ if and only if
C : L2(T;σ)→ L2(D; νϑ,µ) is bounded.
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Motivations Observations about Necessary Conditions

Invariance Under Adjoints

Observation∥∥∥T λ(σf)
∥∥∥
Lp(ω)

≤ C ‖f‖Lp(σ) ⇔
∥∥∥T λ,∗(ωg)

∥∥∥
Lp′ (σ)

≤ C ‖g‖Lp′ (ω) .

• Equivalent left hand side:
∣∣∣〈T λ(σf), g

〉
ω

∣∣∣ ≤ C ‖f‖Lp(σ) ‖g‖Lp′ (ω).

• First, T λ(σf)(x) =
∫
Rd
Kλ(x, y)f(y) dσ(y). Then:

∣∣∣〈T λ(σf), g
〉
ω

∣∣∣ =
∣∣∣∣∫

Rd
T λ(σf)(x)g(x) dω(x)

∣∣∣∣
=

∣∣∣∣∫
Rd

(∫
Rd
Kλ(x, y)f(y) dσ(y)

)
g(x) dω(x)

∣∣∣∣
=

∣∣∣∣∫
Rd

(∫
Rd
Kλ(x, y)g(x) dω(x)

)
f(y) dσ(y)

∣∣∣∣
=

∣∣∣∣∫
Rd
f(y)T λ,∗(ωg)(y) dσ(y)

∣∣∣∣ =
∣∣∣〈f, T λ,∗(ωg)

〉
σ

∣∣∣ .
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ω
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∣∣∣〈f, T λ,∗(ωg)
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∣∣∣ .

• Taking supremum over f ∈ Lp(σ):∥∥∥T λ,∗(ωg)
∥∥∥
Lp′ (σ)

≤ C ‖g‖Lp′ (ω) .

• Argument is reversible by interchanging the roles of σ and ω and f
and g.
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Motivations Observations about Necessary Conditions

Simple Necessary Conditions
• Local scalar testing conditions:∥∥∥1IT λ(σ1I)

∥∥∥
Lp(ω)

≤ TTλ,p (σ, ω) |I|
1
p
σ ,∥∥∥1IT λ,∗(ω1I)

∥∥∥
Lp′ (σ)

≤ TTλ,∗,p′ (ω, σ) |I|
1
p′
ω .

• Global scalar testing conditions:∥∥∥T λ(σ1I)
∥∥∥
Lp(ω)

≤ TTλ,p (σ, ω) |I|
1
p
σ ,∥∥∥T λ,∗(ω1I)

∥∥∥
Lp′ (σ)

≤ TTλ,∗,p′ (ω, σ) |I|
1
p′
ω .

• Weak boundedness property:

For I and J(I), any cube adjacent to
I with the same length,∣∣∣∣∫

Rd
T λ(σ1I) (x) 1J(I) (x) dω (x)

∣∣∣∣ ≤ WBPTλ,p (σ, ω) |I|
1
p
σ |J(I)|

1
p′
ω .
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Motivations Vector-valued inequalities

Vector-Valued Extensions
• We review the well-known `2-extension of a bounded linear

operator.

Let M ∈ N be a large positive integer that we will send
to ∞ at the end.

• Suppose T is bounded from Lp (σ) to Lp (ω), 0 < p <∞, and for
f = {fj}Mj=1, define

T f ≡ {Tfj}Mj=1 .

• For any unit vector u = (uj)Mj=1 in CM define

fu ≡ 〈f ,u〉 and Tuf ≡ 〈T f ,u〉 = T 〈f ,u〉 = T fu

where the final equalities follow since T is linear.

We have∫
Rd
|Tuf (x)|p dω (x) =

∫
Rd
|T fu (x)|p dω (x)

≤ ‖T‖pLp(σ)→Lp(ω)

∫
Rd
|fu (x)|p dσ (x) .
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Motivations Vector-valued inequalities

Vector-Valued Extensions

• Observe for a vector-valued function F(x) that:

〈F (x) ,u〉 = |F (x)|`2
〈

F (x)
|F (x)|`2

,u
〉
.

• Using:
∫
SM−1 |〈u,v〉|p du = γp for ‖v‖ = 1,

∫
SM−1

{∫
Rd
|〈F(x),u〉|p dµ (x)

}
du

=
∫
Rd

{∫
SM−1

|〈F(x),u〉|p du
}
dµ (x)

=
∫
Rd
|F (x)|p`2

{∫
SM−1

∣∣∣∣∣
〈

F (x)
|F (x)|`2

,u
〉∣∣∣∣∣

p

du
}
dµ (x)

= γp

∫
Rn
|F (x)|p`2 dµ (x) .
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Motivations Vector-valued inequalities

Vector-Valued Extensions

• Altogether then,

γp

∫
Rd
|T f (x)|p`2 dω (x) =

∫
SM−1

{∫
Rd
|Tuf (x)|p dω (x)

}
du

=
∫
SM−1

{∫
Rd
|T fu (x)|p dω (x)

}
du

≤
∫
SM−1

{
‖T‖pLp(σ)→Lp(ω)

∫
Rd
|fu (x)|p dσ (x)

}
du

= γp ‖T‖pLp(σ)→Lp(ω)

∫
Rd
|f (x)|p`2 dσ (x) .

• Dividing both sides by γp we conclude that∫
Rd
|T f (x)|p`2 dω (x) ≤ ‖T‖pLp(σ)→Lp(ω)

∫
Rd
|f (x)|p`2 dσ (x) .

• Let M ↗∞ to obtain the `2vector-valued extension.
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Motivations Vector-valued inequalities

Equivalent Problem

Question (Motivating Question)
Find necessary and sufficient conditions on a pair of weights σ and ω
and a smooth λ-fractional singular integral operator T λ on Rd to
characterize when it satisfies the following two weight norm inequality:∥∥∥T λ(σf)

∥∥∥
Lp(Rd,ω) ≤ NTλ,p (σ, ω) ‖f‖Lp(Rd,σ) .

Question (Equivalent Question)
Find necessary and sufficient conditions on a pair of weights σ and ω
and a smooth λ-fractional singular integral operator T λ on Rd to
characterize when it satisfies the following two weight norm inequality:∥∥∥∥∥∥∥

 ∞∑
j=1

T λ(σfj)2

 1
2
∥∥∥∥∥∥∥
Lp(Rd,ω)

≤ NTλ,p (σ, ω)

∥∥∥∥∥∥∥
 ∞∑
j=1

f2
j

 1
2
∥∥∥∥∥∥∥
Lp(Rd,σ)

.
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Motivations Quadratic Necessary Conditions

Quadratic Weak Boundedness

• Quadratic Weak Boundedness:
∞∑
i=1

∑
I∗i ∈Adj(Ii)

∣∣∣∣∫
Rd
aiT

λ(σ1Ii) (x) b∗i1I∗i (x) dω (x)
∣∣∣∣

≤ WBP`2Tλ,p (σ, ω)

∥∥∥∥∥∥
( ∞∑
i=1
|ai1Ii |

2
) 1

2
∥∥∥∥∥∥
Lp(σ)

×

∥∥∥∥∥∥∥
 ∞∑
i=1

∑
I∗i ∈Adj(Ii)

∣∣∣b∗i1I∗i ∣∣∣2
 1

2
∥∥∥∥∥∥∥
Lp′ (ω)

,

where for I ∈ D, its adjacent cubes are defined by

Adj (I) ≡ {I∗ ∈ D : I∗ ∩ I 6= ∅ and ` (I∗) = ` (I)} .
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Motivations Quadratic Necessary Conditions

Quadratic Testing Conditions

• The local quadratic cube testing conditions are∥∥∥∥∥∥
( ∞∑
i=1

∣∣∣ai1IiT λ(σ1Ii)
∣∣∣2) 1

2
∥∥∥∥∥∥
Lp(ω)

≤ Tquad
Tλ,p

(σ, ω)

∥∥∥∥∥∥
( ∞∑
i=1
|ai1Ii |

2
) 1

2
∥∥∥∥∥∥
Lp(σ)

,

∥∥∥∥∥∥
( ∞∑
i=1

∣∣∣ai1IiT λ,∗(ω1Ii)
∣∣∣2) 1

2
∥∥∥∥∥∥
Lp′ (σ)

≤ Tquad
Tλ,∗,p′

(ω, σ)

∥∥∥∥∥∥
( ∞∑
i=1
|ai1Ii |

2
) 1

2
∥∥∥∥∥∥
Lp′ (ω)

,

taken over all sequences {Ii}∞i=1 and {ai}∞i=1 of cubes and numbers
respectively.

• The corresponding quadratic global cube testing constants
Tquad,global
Tλ,p

(σ, ω) and Tquad,global
Tλ,∗,p′

(ω, σ) are defined as above, but
without the indicator 1Ii outside the operator, namely with
1IiT λ(σ1Ii) replaced by T λ(σ1Ii) and symmetrically.
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Motivations Quadratic Necessary Conditions

Muckenhoupt Conditions
• T λ is Stein elliptic if there is a choice of constant C and

appropriate cubes I∗ such that∣∣∣T λ(σ1I) (x)
∣∣∣ ≥ c |I|σ

|I|1−
λ
n

for x ∈ I∗.

• Necessity of the quadratic offset Aλ,`2,offset
p condition then follows

from the global quadratic testing condition. The condition is:∥∥∥∥∥∥∥
 ∞∑
i=1

(
ai1I∗i

|Ii|σ
|Ii|1−

λ
n

)2
 1

2
∥∥∥∥∥∥∥
Lp(ω)

≤ Aλ,`2,offset
p (σ, ω)

∥∥∥∥∥∥
( ∞∑
i=1
|ai1Ii |

2
) 1

2
∥∥∥∥∥∥
Lp(σ)

.

taken over all sequences {Ii}∞i=1 and {ai}∞i=1 of cubes and constants
respectively.

Dual versions by interchanging σ and ω and p and p′.

• Scalar versions exist: |I|
1
p′
σ |I|

1
p
ω

|I|1−
λ
n
≤ Aλp(σ, ω).
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Motivations Quadratic Necessary Conditions

Muckenhoupt Conditions
• T λ is Stein elliptic if there is a choice of constant C and

appropriate cubes I∗ such that∣∣∣T λ(σ1I) (x)
∣∣∣ ≥ c |I|σ

|I|1−
λ
n

for x ∈ I∗.

• Necessity of the quadratic offset Aλ,`2,offset
p condition then follows
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Main Results

Main Theorem in the Doubling Setting

Theorem (E. Sawyer and B. D. Wick, (2022))

Suppose that 1 < p <∞, that σ and ω are locally finite positive Borel
measures on Rd. Then

TTλ,p (σ, ω) + TTλ,∗,p′ (ω, σ) +WBP`2Tλ,p (σ, ω) . NTλ,p (σ, ω)

and when T λ is Stein elliptic, we also have

Aλ,`
2,offset

p (σ, ω) +Aλ,`
2,offset

p′ (ω, σ) . NTλ,p (σ, ω) .

If additionally, σ and ω are doubling measures on Rd. Then

NTλ,p (σ, ω) . TTλ,p (σ, ω) + TTλ,∗,p′ (ω, σ) +WBP`2Tλ,p (σ, ω)

+Aλ,`2,offset
p (σ, ω) +Aλ,`

2,offset
p′ (ω, σ) .
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Main Results

Conjecture of Hytönen and Vuorinen

Conjecture (Hytönen and Vuorinen)
Suppose 1 < p <∞ and that σ and ω are locally finite positive Borel
measures on R. Then the two weight norm inequality for the Hilbert
transform holds if and only if the global quadratic interval testing
conditions hold. Moreover, we have the equivalence

NH,p (σ, ω) ≈ T`
2,glob
H,p (σ, ω) + T`

2,glob
H,p′ (ω, σ) .

Conjecture (Hytönen and Vuorinen)

Suppose 1 < p <∞ and that σ and ω are locally finite positive Borel
measures on R. Then:

NH,p (σ, ω) ≈ T`
2,loc
H,p (σ, ω) + T`

2,loc
H,p′ (ω, σ) +WBP`2H,p (σ, ω)

+A`2,glob
p (σ, ω) +A`

2,glob
p′ (ω, σ) .
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Main Results

Partial Progress on the Hytönen-Vuorinen Conjecture

Theorem (E. Sawyer and B. D. Wick (2023))

Suppose p ∈
(

4
3 , 4
)

and that σ and ω are locally finite positive Borel
measures on R without common point masses. Then the two weight
norm inequality for the Hilbert transform holds if and only if the local
quadratic interval testing conditions hold, the global Muckenhoupt
condition holds, and the quadratic weak boundedness property holds.
Moreover, we have the equivalence

NH,p (σ, ω) ≈ T`
2,loc
H,p (σ, ω) + T`

2,loc
H,p′ (ω, σ) +WBP`2H,p (σ, ω)

+A`2,glob
p (σ, ω) +A`

2,glob
p′ (ω, σ) .
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Sobolev Space Version

Sobolev Space in the Weighted Setting

Definition
Let µ be a doubling measure on Rn. Given s ∈ R, we define the
D-dyadic homogeneous W s

D (µ)-Sobolev norm of a function f ∈ L2
loc (µ)

by
‖f‖2W s

D(µ) ≡
∑
Q∈D

` (Q)−2s
∥∥∥4µ

Qf
∥∥∥2

L2(µ)
,

Definition
For s > 0 and small enough and µ doubling, there is a familiar
‘continuous’ norm,

‖f‖W s(µ) =

√√√√√∫
Rn

∫
Rn

(
f (x)− f (y)
|x− y|s

)2 dµ (x) dµ (y)∣∣∣B (x+y
2 , |x−y|2

)∣∣∣
µ

.
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Sobolev Space Version

Sobolev Version in the L2 Setting

Theorem (E. Sawyer and B. D. Wick, (Math Z. 2022))

Let σ and ω be doubling Borel measures on Rd. Then if 0 < s < θ, with
θ depending on the doubling constants of σ and ω it holds∥∥∥T λ(σf)

∥∥∥
W s(ω)

.
(
Aλ2 + TTλ + TTλ,∗

)
‖f‖W s(σ) ,

provided the fractional Muckenhoupt condition and the Sobolev testing
conditions are finite, where

Aλ2 ≡ sup
Q∈Qn

|Q|ω |Q|σ
|Q|2(1−λ

n)∥∥∥T λσ 1I
∥∥∥
W s(ω)

≤ TTλ (σ, ω)
√
|I|σ` (I)−s , I ∈ Qn,∥∥∥T λ,∗ω 1I

∥∥∥
W−s(σ)

≤ TTλ,∗ (ω, σ)
√
|I|ω` (I)s , I ∈ Qn.
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Main Ideas Behind the Proof and Estimates

Martingale Differences and Haar Functions
• Let µ be a positive locally finite Borel measure on Rd, let D be a

dyadic grid on Rd.

• Let
{
4µ
Q

}
Q∈D

be the associated set of weighted Haar projections

on L2 (µ).

In particular 4µ
Qf (x) =

〈
f, hµQ

〉
hµQ (x) where

{
hµQ

}
Q∈D

is the associated orthonormal Haar basis.

• Then for 1 < p <∞, f ∈ Lp(µ), f =
∑
Q∈D

∆µ
Qf .

• Define the (Haar) martingale square function

Sµf (x) ≡

∑
Q∈D

∣∣∣4µ
Qf (x)

∣∣∣2
 1

2

.

• Key Fact: For 1 < p <∞,
‖Sµf‖Lp(µ) ≈ ‖f‖Lp(µ) .
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Main Ideas Behind the Proof and Estimates

Main Idea Behind the Estimates

• Without loss can assume that f and g are supported on a large
common dyadic interval. Can further assume that

∫
f dσ = 0 and∫

g dω = 0 by using the testing conditions.

• Write f =
∑
I∈D

∆σ
I f and g =

∑
J∈D

∆ω
Jg using the Haar basis.

• Expand the bilinear form associated to T λ:〈
T λ(σf), g

〉
ω

=
∑
I,J∈D

〈
T λ(σ4σ

I f),4ω
Jg
〉
ω
.

• Decompose
〈
T λ(σf), g

〉
ω

=
∑
P

BP (f, g) where P ⊂ D ×D.

• Typical example can be written as:

BP (f, g) =
∑

(I,J)∈P

〈
T λ(σ4σ

I f),4ω
Jg
〉
ω

=
∑

(I,J)∈P

〈
4ω
JT

λ
σ 4σ

I f,4ω
Jg
〉
ω
.
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Main Ideas Behind the Proof and Estimates

Main Idea Behind the Estimates

• Apply the Cauchy-Schwarz in `2 and Hölder in Lp (ω), to obtain

|BP (f, g)| =

∣∣∣∣∣∣
∫
Rd

 ∑
(I,J)∈P

4ωJTλσ 4σI f (x) 4ωJ g (x)

 dω (x)

∣∣∣∣∣∣
≤
∫
Rd

 ∑
(I,J)∈P

∣∣4ωJTλ(σ4σI f) (x)
∣∣2 1

2
 ∑

(I,J)∈P

|4ωJg (x)|2
 1

2

dω (x)

≤

∥∥∥∥∥∥∥
 ∑

(I,J)∈P

∣∣4ωJTλ(σ4σI f) (x)
∣∣2 1

2
∥∥∥∥∥∥∥
Lp(ω)

∥∥∥∥∥∥∥
 ∑

(I,J)∈P

|4ωJg (x)|2
 1

2
∥∥∥∥∥∥∥
Lp′ (ω)

=
∥∥∥∣∣∣{4ωJTλ(σ4σI f)

}
(I,J)∈P

∣∣∣
`2

∥∥∥
Lp(ω)

∥∥∥∣∣∣{4ωJg}(I,J)∈P

∣∣∣
`2

∥∥∥
Lp′ (ω)

.
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• Apply the Cauchy-Schwarz in `2 and Hölder in Lp (ω), to obtain
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Main Ideas Behind the Proof and Estimates

Main Idea Behind the Estimates

• The second factor is controlled by ‖g‖Lp′ (ω) provided the pairs
(I, J) ∈ P are pigeonholed so that only a bounded number of I ′s
are paired with a given J .

• To handle the first factor we need to manipulate the sequence{
4ω
JT

λ(σ4σ
I f)

}
(I,J)∈P

so as to apply one of the quadratic
hypotheses.
• Some of the standard proof ingredients in this setting appear:

• Use of random dyadic grids and good/bad intervals of Nazarov,
Treil and Volberg.

• Control of paraproduct type operators by the Carleson Embedding
Theorem and the testing conditions.

• Square function estimates, and variants, are used to control the
factor involving ‖g‖Lp′ (ω).
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Conclusion

(Modified from the Original Dr. Fun Comic)

Thanks for the opportunity to speak at the IUPUI Colloquium!
Thanks to the Organizers for Arranging MWAA!
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