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Motivations

¢ Singular integrals are central to complex analysis and harmonic
analysis and are intimately connected with the study of partial
differential equations.
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Motivations

¢ Singular integrals are central to complex analysis and harmonic
analysis and are intimately connected with the study of partial
differential equations.

® A singular integral is an integral operator
T(f)(w) = [ K@) @) dy

where the kernel function K (z,7) : R x RY — R is singular along
the diagonal x = y.
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Motivations

¢ Singular integrals are central to complex analysis and harmonic
analysis and are intimately connected with the study of partial
differential equations.

® A singular integral is an integral operator
T(f)(w) = [ K@) @) dy

where the kernel function K (z,y) : R? x R? — R is singular along
the diagonal x = y.

¢ Typical conditions on the kernel are:
and |V K (z,y)| + [VyK(z,y)| <

d d :
|z — gyl

|K (z,y)| <
|z -y
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Motivations

¢ Under the hypotheses above, when 1 < p < co, the operator 1" is
bounded on all LP(RY).
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Motivations

¢ Under the hypotheses above, when 1 < p < co, the operator 1" is
bounded on all LP(RY).
* Fails to be bounded on L'(R%) and L>®(R%).
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Motivations

¢ Under the hypotheses above, when 1 < p < co, the operator 1" is
bounded on all LP(RY).

* Fails to be bounded on L'(R%) and L>®(R%).

e The Hilbert transform is the prototype for all Calderén-Zygmund

operators:
Hf(z) = S) dy.

RY—Z
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Motivations

¢ Under the hypotheses above, when 1 < p < co, the operator 1" is
bounded on all LP(RY).

* Fails to be bounded on L'(R%) and L>®(R%).

e The Hilbert transform is the prototype for all Calderén-Zygmund

operators:
Hf(z) = S) dy.

RY—T
Plays an important role in complex analysis and harmonic
analysis.
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Motivations

¢ Under the hypotheses above, when 1 < p < co, the operator 1" is
bounded on all LP(RY).

* Fails to be bounded on L'(R%) and L>®(R%).

e The Hilbert transform is the prototype for all Calderén-Zygmund

operators:
i) = [ 19 g
RY—T
Plays an important role in complex analysis and harmonic
analysis.
¢ Riesz transforms are the d-dimensional analogue of the Hilbert
transform.
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Motivations

¢ Under the hypotheses above, when 1 < p < co, the operator 1" is
bounded on all LP(RY).

* Fails to be bounded on L'(R%) and L>(R%).

e The Hilbert transform is the prototype for all Calderén-Zygmund

operators:
Hf(z) = S) dy.
RY—T
Plays an important role in complex analysis and harmonic
analysis.
¢ Riesz transforms are the d-dimensional analogue of the Hilbert
transform. Strong connection to the Laplacian.
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Motivations

¢ Under the hypotheses above, when 1 < p < co, the operator 1" is
bounded on all LP(RY).

* Fails to be bounded on L'(R%) and L>(R%).

e The Hilbert transform is the prototype for all Calderén-Zygmund

operators:
i@ = [ I ay
RY—T
Plays an important role in complex analysis and harmonic
analysis.
¢ Riesz transforms are the d-dimensional analogue of the Hilbert
transform. Strong connection to the Laplacian. For 1 < j < d
denote the Riesz transform in the jth variable by

Ri(Nw) = [ 8 f(y) dy.

Re |z — y
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Motivations

¢ For 0 < X\ < d we define a smooth A-fractional Calderén-Zygmund
kernel K*(z,y) to be a function K* : R? x R? — R satisfying the
following fractional size and smoothness conditions
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Motivations

¢ For 0 < X\ < d we define a smooth A-fractional Calderén-Zygmund
kernel K*(z,y) to be a function K* : R? x R? — R satisfying the
following fractional size and smoothness conditions

VIE> (@,)] + |V K> (2,9)| < Caglz =y, 0<j<oo.
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Motivations

¢ For 0 < X\ < d we define a smooth A-fractional Calderén-Zygmund
kernel K*(z,y) to be a function K* : R? x R? — R satisfying the
following fractional size and smoothness conditions

VIE> (@,)] + |V K> (2,9)| < Caglz =y, 0<j<oo.

* Denote by T the associated A-fractional singular integral on RY.
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Motivations

¢ For 0 < X\ < d we define a smooth A-fractional Calderén-Zygmund
kernel K*(z,y) to be a function K* : R? x R? — R satisfying the
following fractional size and smoothness conditions

VIE> (@,)] + |V K> (2,9)| < Caglz =y, 0<j<oo.

* Denote by T the associated A-fractional singular integral on RY.
The case of A = 0 corresponds to classical Calderén-Zygmund
kernels.
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Motivations

¢ For 0 < X\ < d we define a smooth A-fractional Calderén-Zygmund
kernel K*(z,y) to be a function K* : R? x R? — R satisfying the
following fractional size and smoothness conditions

VIE> (@,)] + |V K> (2,9)| < Caglz =y, 0<j<oo.

* Denote by T the associated A-fractional singular integral on RY.
The case of A = 0 corresponds to classical Calderén-Zygmund
kernels.

Find necessary and sufficient conditions on a pair of weights o and w
and a smooth \-fractional singular integral operator T* on R? to
characterize when it satisfies the following two weight norm inequality

HT’\(Uf)’ Lp(R4w) < Npay (0,0) ”fHL”(Rd’U) '
B. D. Wick (WUSTL) ‘Weighted Estimates & CZ Operators|  October 13, 2023  4/29



Motivations

Well studied problem in harmonic analysis:
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Motivations

Well studied problem in harmonic analysis:
® When ¢ = w = dx then this question is related to the famous T'1
Theorem of David and Journé from 1984.
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Motivations

Well studied problem in harmonic analysis:
® When 0 = w = dx then this question is related to the famous 7'1
Theorem of David and Journé from 1984.
¢ For non-negative operators, different than Calderén-Zygmund
operators, the problem was resolved by E. Sawyer in 1989.
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Motivations

Well studied problem in harmonic analysis:

® When 0 = w = dx then this question is related to the famous 7'1
Theorem of David and Journé from 1984.

¢ For non-negative operators, different than Calderén-Zygmund
operators, the problem was resolved by E. Sawyer in 1989.

¢ Late 1990s/early 2000s Nazarov, Treil and Volberg (NTV) studied
the problem for the Hilbert transform and formulated a conjecture
about the Hilbert Transform acting between L?(c0) to L?(w).
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Motivations

Well studied problem in harmonic analysis:

® When 0 = w = dx then this question is related to the famous 7'1
Theorem of David and Journé from 1984.

¢ For non-negative operators, different than Calderén-Zygmund
operators, the problem was resolved by E. Sawyer in 1989.

¢ Late 1990s/early 2000s Nazarov, Treil and Volberg (NTV) studied
the problem for the Hilbert transform and formulated a conjecture
about the Hilbert Transform acting between L?(c0) to L?(w).

e NTV Conjecture was resolved by Lacey, Sawyer, Shen,
Uriarte-Tuero and Lacey in a two part paper in 2010s. Point
masses in the measures were removed by Hytonen afterwards.
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Motivations

Well studied problem in harmonic analysis:

When o = w = dx then this question is related to the famous 7'1
Theorem of David and Journé from 1984.

For non-negative operators, different than Calderén-Zygmund
operators, the problem was resolved by E. Sawyer in 1989.

Late 1990s/early 2000s Nazarov, Treil and Volberg (NTV) studied
the problem for the Hilbert transform and formulated a conjecture
about the Hilbert Transform acting between L?(c0) to L?(w).
NTYV Conjecture was resolved by Lacey, Sawyer, Shen,
Uriarte-Tuero and Lacey in a two part paper in 2010s. Point
masses in the measures were removed by Hytonen afterwards.
Work by Lacey, Sawyer, Shen, Uriarte-Tuero, W. and others
studying variants of this problem for different Calderén-Zygmund
operators and classes of weights.
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Motivations

Well studied problem in harmonic analysis:

When o = w = dx then this question is related to the famous 7'1
Theorem of David and Journé from 1984.

For non-negative operators, different than Calderén-Zygmund
operators, the problem was resolved by E. Sawyer in 1989.

Late 1990s/early 2000s Nazarov, Treil and Volberg (NTV) studied
the problem for the Hilbert transform and formulated a conjecture
about the Hilbert Transform acting between L?(c0) to L?(w).
NTYV Conjecture was resolved by Lacey, Sawyer, Shen,
Uriarte-Tuero and Lacey in a two part paper in 2010s. Point
masses in the measures were removed by Hytonen afterwards.
Work by Lacey, Sawyer, Shen, Uriarte-Tuero, W. and others
studying variants of this problem for different Calderén-Zygmund
operators and classes of weights.

Dyadic (discrete) variants studied by NTV, Hytonen, Vuorinen,
and others.
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Motivations

* Let H? denote the Hardy space on the unit disc I;
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Motivations

* Let H? denote the Hardy space on the unit disc I;
® Let 9 denote an inner function on ID:

[9(€) =1 ae £eT.
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Motivations

* Let H? denote the Hardy space on the unit disc I;
® Let 9 denote an inner function on ID:

[9(€) =1 ae £eT.
o Let Ky = H? o 0H?.
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Motivations

Let H? denote the Hardy space on the unit disc ID;
Let 9 denote an inner function on D:

[9(€) =1 ae £eT.
Let Ky = H?> o 9H?.
This is a reproducing kernel Hilbert space with kernel:
_1-90)9(2)

KA(z) 1- )z
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Motivations

Let H? denote the Hardy space on the unit disc ID;
Let 9 denote an inner function on D:

[9(€) =1 ae £eT.
Let Ky = H?> o 9H?.
This is a reproducing kernel Hilbert space with kernel:
T IN)D(2)
1— )z

Geometrically/function theoretically characterize the Carleson
measures for Ky:

K)\(Z)

L1 dut) < 0P 171, 7 € Ko
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Motivations

® We always have the necessary condition:

1 -I00)|
A

o hdu(z) < CW? |Kallk, VA ED.
’1 — )\z‘

B.D. Wick (WUSTL)  Weighted Estimates & CZ Operators IIIOCOBE 205507 /557



Motivations

® We always have the necessary condition:

1 -I00)|
A

o hdu(z) < CW? |Kallk, VA ED.
’1 — )\z‘

e [f ¥ is a one-component inner function:
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Motivations

® We always have the necessary condition:

—_ %

\1—19@)19(2)] o

L du) < c@ I, vaeD.
W ’1—)\2:‘

e If ¥ is a one-component inner function: Namely,
Q) ={ze€D : |9(2)| <€}, 0<ex<l1

is connected for some e:
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Motivations

® We always have the necessary condition:

/ \1 —INVI(2)
D ’1—Xz‘2

e If ¥ is a one-component inner function: Namely,

’2

au(z) < C(w? K%, WAED,

Q) ={ze€D : |9(2)| <€}, 0<ex<l1

is connected for some e:

¢ Cohn proved that p is a Ky-Carleson measure if and only if the
testing conditions hold for Carleson boxes that intersect Q(e).
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Motivations

® We always have the necessary condition:

/ \1 —INVI(2)
D ’1—Xz‘2

e If ¥ is a one-component inner function: Namely,

’2

au(z) < C(w? K%, WAED,

Q) ={ze€D : |9(2)| <€}, 0<ex<l1

is connected for some e:
¢ Cohn proved that p is a Ky-Carleson measure if and only if the
testing conditions hold for Carleson boxes that intersect Q(e).
® Treil and Volberg gave an alternate proof of this which also works
for 1 < p < 0.
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Motivations

® We always have the necessary condition:

/ \1 —INVI(2)
D ’1—Xz‘2

e If ¥ is a one-component inner function: Namely,

’2

au(z) < C(w? K%, WAED,

Q) ={ze€D : |9(2)| <€}, 0<ex<l1

is connected for some e:
¢ Cohn proved that p is a Ky-Carleson measure if and only if the
testing conditions hold for Carleson boxes that intersect Q(e).
® Treil and Volberg gave an alternate proof of this which also works
for 1 < p < 0.
¢ Nagzarov and Volberg proved the obvious necessary condition is not
sufficient for p to be a Ky-Carleson measure.
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Motivations

® Let o denote a measure on R.

® Let o denote a measure on T.
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Motivations

® Let o denote a measure on R.

® Let 7 denote a measure on Rﬁ_.

® Let o denote a measure on T.

¢ Let 7 denote a measure on .
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Motivations _

® Let o denote a measure on R.
® Let 7 denote a measure on Rﬁ_.

* For f € L?(R, o), the Cauchy transform will be

o) = [ L o(dw).

RW— 2

Let o denote a measure on T.

Let 7 denote a measure on D.

For f € L?(T, o), the Cauchy transform will be

z)=/ﬂ‘%a(dw)
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Motivations

® Associate to ¥ and o € T a measure o, such that:

Re(“”i) /\1_|Z| 7el8)

Let 0 = 01 denote the Clark measure on T.
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Motivations

® Associate to ¥ and o € T a measure o, such that:

Re(awi) /\1_|Z| 7el8)

Let 0 = 01 denote the Clark measure on T.
® Then L%(T;o) is unitarily equivalent to Ky via a unitary U.
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Motivations

® Associate to ¥ and o € T a measure o, such that:

Re<a+ﬁz> /‘1—|Z| (©).

Let 0 = 01 denote the Clark measure on T.
® Then L%(T;o) is unitarily equivalent to Ky via a unitary U.
° U*: L*(T;0) — Ky has the integral representation given by

U 1) = (1= 0(2)) [ L otas).
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Motivations

Associate to ¥ and o € T a measure o, such that:

Re<a+ﬁz> /‘1—|Z| (©).

Let 0 = 01 denote the Clark measure on T.
Then L%(T; o) is unitarily equivalent to Ky via a unitary U.
U* : L?(T;0) — Ky has the integral representation given by
Uti(a) = (- 0(2)) [ L oag)
T1— &2
For the inner function ¥ and measure pu, define a new measure
vou = |1 -9
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Motivations

Associate to ¥ and o € T a measure o, such that:

Re<a+19j> /‘1—|Z| (©).

Let 0 = 01 denote the Clark measure on T.
Then L%(T; o) is unitarily equivalent to Ky via a unitary U.
U* : L?(T;0) — Ky has the integral representation given by
Uti(a) = (- 0(2)) [ L oag)
T1— &2
For the inner function ¥ and measure pu, define a new measure
vou = |1 -9

A measure 1 is a Carleson measure for Ky if and only if
C: L%(T;0) — L*(D;vy,,) is bounded.
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|7@h) ) < C Ml & [T (w0) Cligll o o -

<
) Lv' (o) —
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“

[761)],10 S €M iaiey & |7 (9)

Lp()_ HgHLP(w 0

® Equivalent left hand side: K (o'f > ‘ <C ”fHLP o lgll Lo o
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Motivations _

|||, < CMlloey & [T @0 1) < Cllallmy

¢ Equivalent left hand side: ‘<T>‘(af),g>w‘ < C £l pe(o) 191 Lo (-
e First, TA(o f)(z) = /d K*(z,y)f(y) do(y). Then:
R

L' ()
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Motivations _

|7@h) ) < C Ml & [T (w0) Cligll o o -

¢ Equivalent left hand side: ‘<T>‘(af),g>w‘ < C £l pe(o) 191 Lo (-
e First, TA(o f)(z) = /d K*(z,y)f(y) do(y). Then:
R

LS
L¥ (o)

(ena)| = | [, oD@ datz)
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[7@)]0y < C Ml & [T (9)

Lp()— HgHLP(w o

¢ Equivalent left hand side: KT)‘(af > ‘ S ClFll ey N9l Lot (o) -
o First, T (o f)(z) :/dK’\(ac,y)f( ) o). i
R

’<TA(°'f )’9>w’ = ‘ /Rd T (o f)(z)g(z) dw(z)
/Rd < K@y f) da(?J)) g(z) dw ()
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|7@h) ) < C Ml & [T (w0)

¥ (o ) < Cligll (w)

¢ Equivalent left hand side: KT)‘(af > ‘ S ClFll ey N9l Lot (o) -
o First, T (o f)(z) :/dK’\(ac,y)f( ) o). i
R

(T*en.g)| = |[,TNeDH@y@) dula)
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|7@h) ) < C Ml & [T (w0)

¥ (o ) < Cligll (w)

¢ Equivalent left hand side: KT)‘(af > ‘ S ClFll ey N9l Lot (o) -
o First, T (o f)(z) :/dK’\(ac,y)f( V). Then
R

(T*en.g)| = |[,TNeDH@y@) dula)
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|7, < CMlney & [T @0 1) < Cllallmy

L¥' (o) —
¢ Left hand side equivalent to:
(T2 £),9)_| < CllAlzoo) 191w o) -

¢ Then:
(T*@f),9) | = (£, T*(wg)) |.
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|7, < CMlney & [T @0 1) < Cllallmy

L¥' (o) —
¢ Left hand side equivalent to:
(T2 £),9)_| < CllAlzoo) 191w o) -

¢ Then:
(@*eh.g),| = (1T wa), |

¢ Taking supremum over f € LP(o):

|7 (wg)

oy < Clsllior-
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Motivations _

|7, < CMlney & [T @0 1) < Cllallmy

L¥' (o) —
¢ Left hand side equivalent to:
(T2 £),9)_| < CllAlzoo) 191w o) -

¢ Then:
(@*eh.g),| = (1T wa), |

¢ Taking supremum over f € LP(o):

|7 (wg)

oy < Clsllior-

® Argument is reversible by interchanging the roles of o and w and f
and g.
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Motivations

¢ Local scalar testing conditions:

o1, S SopleliE,

H11T>‘7*(wl])HLpl(a) < ETA,*#)/ (w,a) |I’Er .
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Motivations

¢ Local scalar testing conditions:

HlIT)‘(UII)H )

1
< P
pw) = IT>‘,p (o,w) 1|5,

H11T>‘7*(wl])HLp/(a) < QTA,*#)/ (w,a) |I’Er .

¢ Global scalar testing conditions:

[

LP(w) S ‘ITA,p (O',CU) |I|£ 0

o)

v
¥ (o) < Ty (W, 0) [1|G -
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Motivations

¢ Local scalar testing conditions:

|ure1n), Tpsp (00) 112,

e =
H11T>‘7*(wl])HLp/(a) < QTA,*#)/ (w,a) |I’Er.

¢ Global scalar testing conditions:

< ‘IT*,p (U’w) |I|¢7;7

HT)\(O'].I)‘ o) =

o)

v
¥ (o) < Ty (W, 0) [1|G -

* Weak boundedness property:
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Motivations

¢ Local scalar testing conditions:

1
‘ZT*,p (an) |I|0p ’

1

Tras p (W, 0) |I]Ef .

”11T*(011)HL1)(M) =

[ ean] ., <

¢ Global scalar testing conditions:

1

< (ST*,p (U7w) |I|},’,

HT)\(O'].I)‘ o) =

1

HT%*(wm Tan y (w,0) 117

<

L' (o)

* Weak boundedness property: For I and J(I), any cube adjacent to
I with the same length,

Lo
[, 1010 @) Loy @) d @) < WBPpa, (0.) 112 (D)2
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Motivations

e We review the well-known ¢2-extension of a bounded linear
operator.
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Motivations

e We review the well-known ¢2-extension of a bounded linear
operator. Let M € N be a large positive integer that we will send
to oo at the end.
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Motivations

* We review the well-known ¢?-extension of a bounded linear
operator. Let M € N be a large positive integer that we will send
to oo at the end.

® Suppose T is bounded from L? (o) to LP (w), 0 < p < oo, and for
f= {fj}j]vil, define

Tt = {Tfj}jlvil :
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Motivations

e We review the well-known ¢2-extension of a bounded linear
operator. Let M € N be a large positive integer that we will send
to oo at the end.

® Suppose T is bounded from L? (o) to LP (w), 0 < p < oo, and for
f= {fj}j]vil, define

— M
T ={Tf};.-
¢ For any unit vector u = (uj)j]vil in CM define
f, = (f,u) and T,f = (Tf,u) =T (f,u) = Tf,

where the final equalities follow since T is linear.
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Motivations _

e We review the well-known ¢2-extension of a bounded linear
operator. Let M € N be a large positive integer that we will send
to oo at the end.

® Suppose T is bounded from L? (o) to LP (w), 0 < p < oo, and for
f= {fj}j]vil, define
Tf = {Tf;},
¢ For any unit vector u = (uJ)M1 in CM define
f, = (f,u) and T,f = (Tf,u) =T (f,u) = Tf,

where the final equalities follow since T is linear. We have

/Rd |Tuf (2)]P dw (z) = / Tty ()| dw (z)
< HT”LP(J)_)Lp(w)/ | dcr( )
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“

® Observe for a vector-valued function F(x) that:

(F (), ) = |F (&) < |FF((”§L2 u> |
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Motivations _

® Observe for a vector-valued function F(x) that:

(F (), ) = |F (&) < |FF((”§L2 u> |

* Using: fgu-1 [(u, v)[P du =, for ||v| =1,
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Motivations _

® Observe for a vector-valued function F(x) that:

<Fm»w=uww@<g¥ﬁ@u>

* Using: [sv—1 |(u, v)|P du =, for ||v| =1,

/SM_I{ WP du :c)}du
= [l fore V@ 0P au} a2
/ IF (@ {/ <|F(S§L2 “>

= [ [F @5 du().
B.D. Wick (WUSTL) [Weighted Bstimates & 0z opsrsc B
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Motivations _

¢ Altogether then,
p P
qp/ ITE ()|, dw () — /SM_I{ [ [Tt @) d (x)}du
— p
= {/Rd (Tfy ()] dw(az)}du

< [ ATyt [ 10 @ do @)}

= 2 T om0y f, [ @) 0 (@)
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Motivations _

¢ Altogether then,
p p
qp/ ITE ()|, dw () — /SM_I{ [ [Tt @) d (x)}du
_ p
-/ {/}Rd ITf, () dw(as)}du

< [ ATyt [ 10 @ do @)}
= 2 T om0y f, [ @) 0 (@)

¢ Dividing both sides by 7, we conclude that

T @) do @) < T s100 [, 1 @ do (@),
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Motivations _

¢ Altogether then,
p p
qp/ ITE ()|, dw () — /SM_I{ [ [Tt @) d (x)}du
_ p
-/ {/}Rd ITf, () dw(x)}du

p p
< Lo 1T [ 1 @F dor ()}
= 2 T om0y f, [ @) 0 (@)
¢ Dividing both sides by 7, we conclude that
T @) do @) < T s100 [, 1 @ do (@),

* Let M oo to obtain the f?vector-valued extension.
B. D. Wick (WUSTL) ‘Weighted Estimates & CZ Operators|  October 13, 2023  15/29 |



Motivations

Find necessary and sufficient conditions on a pair of weights o and w
and a smooth \-fractional singular integral operator T* on R% to
characterize when it satisfies the following two weight norm inequality:

HT)‘(O'f)H < mTA,p (07 w) ”fHL:D(]Rd,o) :

Lr(R4w)
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Motivations _

Find necessary and sufficient conditions on a pair of weights o and w
and a smooth \-fractional singular integral operator T* on R% to
characterize when it satisfies the following two weight norm inequality:

HT/\(O'f)H ) < mTA,p (07 w) ”fHL:D(]Rd,o) :

Lr(Réw

Find necessary and sufficient conditions on a pair of weights o and w
and a smooth \-fractional singular integral operator T* on R% to
characterize when it satisfies the following two weight norm inequality:

1

00 2 1) 2
> TXof))? <Ny, (o,w) ||| D 17
j=1 j=1

Lp(Rdw) Lp(Rd,0)
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Motivations _

* Quadratic Weak Boundedness:

>y

) a; T (o17,) () bi1r: (z) dw (z)

i=1 I*eAdj(I;)
< WBPY, (ZW“' )
Lr (o)
1
0o 2 >
X (.Z ]
i=1 I7€Adj(I;) LY (w)

where for I € D, its adjacent cubes are defined by
Adj()={I'eD:I'NI#Qand £(I")=¢(I)}.
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Motivations

¢ The local quadratic cube testing conditions are

A 2 % uad - 2 %
ailIiT (0-111')‘ < ‘I(jl“k7p (va) Z |ai11i| )

i=1 L7(0)

(oo

i=1

1 1

Ak 2 2 ua > 2 2
a;17,T™ (W1L,-)‘ < ‘STqM’p, (w,0) E la;1p,]

=1

>
= L7 ()

taken over all sequences {I;};°; and {a;};-; of cubes and numbers
respectively.
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Motivations

® The local quadratic cube testing conditions are

2 2
ai]-IiT)\(U]-Ii)‘ ) uad <Z|a111| ) ;
Lp(a

LP(w) )

>

i=1

b

1
2\ 2
ailfiTA’*(wlli)‘ ) < TP, @ (Z |aily| )

L? (o) LP (w)

taken over all sequences {I;};°; and {a;};-; of cubes and numbers
respectively.

¢ The corresponding quadratic global cube testing constants
Tquad’global (0,w) and Tquiaf slobal (), &) are defined as above, but
wzthout the indicator 1y, outs1de the operator, namely with
1, T*(o1y,) replaced by T*(o1;,) and symmetrically.
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Motivations

* T* is Stein elliptic if there is a choice of constant C' and
appropriate cubes I* such that
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Motivations

* T* is Stein elliptic if there is a choice of constant C' and
appropriate cubes I* such that

7 (011) (a:)‘ >l

¢ Necessity of the quadratic offset Al))"gz’Olcfset condition then follows
from the global quadratic testing condition. The condition is:

1
= | il \ A, 02 offset = p) :
Z 04‘1]: 15& = Ap, R (O',UJ) Z'a’ilh|
| Lr(o)

u=l1
LP(w)

taken over all sequences {I;}:°; and {a;};2, of cubes and constants
respectively.
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Motivations

* T* is Stein elliptic if there is a choice of constant C' and
appropriate cubes I* such that

7 (011) (a:)‘ >l

¢ Necessity of the quadratic offset Al))"gz’Olcfset condition then follows
from the global quadratic testing condition. The condition is:

1
= | il \ A, 02 offset = p) :
Z 04‘1]: 15& = Ap, R (O',UJ) Z'a’ilh|
| Lr(o)

u=l1
LP(w)

taken over all sequences {I;}:°; and {a;};2, of cubes and constants
respectively. Dual versions by interchanging ¢ and w and p and p'.
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Motivations

* T* is Stein elliptic if there is a choice of constant C' and
appropriate cubes I* such that

1
‘T)\(O'].]) (a:)‘ > c% for x € I*".

¢ Necessity of the quadratic offset Al))"gz’Olcfset condition then follows
from the global quadratic testing condition. The condition is:

1
- |4 “\° €2 offset - 2 :
> (@it X < APt (g, w) | Y fail |
| Lr(o;

u=l1
LP(w)

taken over all sequences {I;}:°; and {a;};2, of cubes and constants
respectively. Dual versions by interchanging ¢ and w and p and p'.

L o1
. N2k

¢ Scalar versions exist: J—ll"|—1|—li < Afo‘(cr, w).
ik
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Main Results

Suppose that 1 < p < 0o, that o and w are locally finite positive Borel
measures on R®. Then

T p (0,0) + Tpas y (w,0) + WBP?,?AJ] (o0,w) SNy, (0,w)
and when T is Stein elliptic, we also have
AN (g ) 4 ANETE (1 ) S M (0,0
If additionally, o and w are doubling measures on R*. Then

Npap(0,0) S Fpay (0,0) + Ty (W, 0) + WBPE, (0, w)

+A}))\7£2,0ffset (U, w) + AZ))\;ZQ,offset (w’ 0') )
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Main Results

Suppose 1 < p < 0o and that o and w are locally finite positive Borel
measures on R. Then the two weight norm inequality for the Hilbert
transform holds if and only if the global quadratic interval testing
conditions hold. Moreover, we have the equivalence

22 glob 22 glob
Nup (0,w) = Ty (0,w) +FTy'p” (w,0).

Suppose 1 < p < 0o and that o and w are locally finite positive Borel
measures on R. Then:

Ny (0,w) = THi®(0,w) +T55° (w,0) + WBPY , (0,w)
+Af;2,glob (07 w) + A;ﬁ»glob (w’ O') ‘
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Main Results

Suppose p € (%,4) and that o and w are locally finite positive Borel
measures on R without common point masses. Then the two weight
norm inequality for the Hilbert transform holds if and only if the local
quadratic interval testing conditions hold, the global Muckenhoupt
condition holds, and the quadratic weak boundedness property holds.
Moreover, we have the equivalence

Nup(o,w) =~ ‘IZ’IIJOC CATES iﬁ,’;e (w,0) + WBPﬁp (o,w)

2
+A§27g10b (0.’ w) + Af;/aglob (w, O_) )
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Sobolev Space Version

Let 4 be a doubling measure on R™. Given s € R, we define the
D-dyadic homogeneous W (1)-Sobolev norm of a function f € L12OC (1)
by

Agf‘

2
L2(u) ’

1 e gy = D 0@
QeD
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Sobolev Space Version

Let 4 be a doubling measure on R™. Given s € R, we define the
D-dyadic homogeneous W (1)-Sobolev norm of a function f € L12OC (1)
by

—2s o -
Sof ‘ L2(p)

1 g = D €@
QeD

For s > 0 and small enough and g doubling, there is a familiar
‘continuous’ norm,

o [ R e
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Sobolev Space Version

Let o and w be doubling Borel measures on R?. Then if 0 < s < 0, with
0 depending on the doubling constants of o and w it holds

[72@ )y S (434 T2+ S0 ) 1l

w)

provided the fractional Muckenhoupt condition and the Sobolev testing
conditions are finite, where

A%\ — ’Q|w ’Q|O‘

qeon 1Q2(1-%)
HT‘i\IIHWS(w) < T (o,w) \/ﬁf (1)~*, IeQn,
HTo?’*hHW_%) < Tpe (@ 0) M LD, TeQn

B. D. Wick (WUSTL)




Main Ideas Behind the Proof and Estimates

* Let u be a positive locally finite Borel measure on R?, let D be a
dyadic grid on R,

B.D. Wick (WUSTL)  Weighted Estimates & CZ Operators IIIOSEEeTiENZ055EE)557



Main Ideas Behind the Proof and Estimates

* Let u be a positive locally finite Borel measure on R?, let D be a
dyadic grid on R,
l,l, . . . .
¢ Let {AQ}QG'D be the associated set of weighted Haar projections

on L? (p).
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Main Ideas Behind the Proof and Estimates

* Let u be a positive locally finite Borel measure on R?, let D be a
dyadic grid on R,
l,l, . . . .
¢ Let {AQ}QG'D be the associated set of weighted Haar projections
on L? (u). In particular A‘é (x) = <f, h‘é> h’é () where {h’é}

is the associated orthonormal Haar basis.

QeD
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Main Ideas Behind the Proof and Estimates

* Let u be a positive locally finite Borel measure on R?, let D be a
dyadic grid on R,
¢ Let {A” } . be the associated set of weighted Haar projections

on L? (u). In particular A of ()= <f, h‘é> h’é (x) where {h’é}

is the associated orthonormal Haar basis.

® Then for 1 < p < oo, f € LP(u), f = ZA
QeD

QeD
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Main Ideas Behind the Proof and Estimates

* Let u be a positive locally finite Borel measure on R?, let D be a
dyadic grid on R,

¢ Let {A” } . be the associated set of weighted Haar projections
on L? (u). In particular A of (@)= <f, h‘é> h’é () where {h’é}
is the associated orthonormal Haar basis.

® Then for 1 < p < oo, f € LP(u), f = ZA

QeD
® Define the (Haar) martingale square function

SHf (2 E<Z]Agf ])2

QeD

QeD
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Main Ideas Behind the Proof and Estimates

* Let u be a positive locally finite Borel measure on R?, let D be a
dyadic grid on R,

¢ Let {A” } . be the associated set of weighted Haar projections
on L? (u). In particular A of (@)= <f, h‘é> h’é () where {h’é}
is the associated orthonormal Haar basis.

® Then for 1 < p < oo, f € LP(u), f = ZA

QeD
® Define the (Haar) martingale square function

1
3
S'f (@ (Z % f (@) ) :
QeD
¢ Key Fact: For 1 < p < oo,
”S#f”LP(,L) & ”f”Lp(u) .

QeD
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Main Ideas Behind the Proof and Estimates

® Without loss can assume that f and g are supported on a large
common dyadic interval. Can further assume that [ f do = 0 and
| g dw = 0 by using the testing conditions.
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Main Ideas Behind the Proof and Estimates

® Without loss can assume that f and g are supported on a large
common dyadic interval. Can further assume that [ f do = 0 and
| g dw = 0 by using the testing conditions.

e Write f = Z A7f and g = Z A%g using the Haar basis.
IeD JED
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Main Ideas Behind the Proof and Estimates

® Without loss can assume that f and g are supported on a large
common dyadic interval. Can further assume that [ f do = 0 and
| g dw = 0 by using the testing conditions.

e Write f = Z A7f and g = Z A%g using the Haar basis.
IeD JED

e Expand the bilinear form associated to T*:

(TNof),9) = 3 (TNo A7 £),A59)

I,JeD

* Decompose <T)‘(af),g>w = Z Bp (f,9) where P C D x D.
P
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Main Ideas Behind the Proof and Estimates

® Without loss can assume that f and g are supported on a large
common dyadic interval. Can further assume that [ f do = 0 and
| g dw = 0 by using the testing conditions.

e Write f = Z A7f and g = Z A%g using the Haar basis.
IeD JeD
e Expand the bilinear form associated to T*:

(TNof),9) = 3 (TNo A7 £),A59)

1,JeD
* Decompose <T)‘(af),g>w = Z Bp (f,9) where P C D x D.
P

¢ Typical example can be written as:

Br(f,9) =Y. (TNoAFf),05) =Y (A9T) A7 F,0%)

(I,J)eP (I,J)eP
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Main Ideas Behind the Proof and Estimates

® Apply the Cauchy-Schwarz in ¢* and Hélder in L? (w), to obtain
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Main Ideas Behind the Proof and Estimates

® Apply the Cauchy-Schwarz in ¢* and Hélder in L? (w), to obtain

IBP(f,g)I=|/Rd S AYTXAT S (@) AYg(@) ¢ dua)

(I,J)eP
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Main Ideas Behind the Proof and Estimates

® Apply the Cauchy-Schwarz in ¢* and Hélder in L? (w), to obtain
Br(rol=|[ Y ASTIAT (@) 25900 dole)
R (r,0er
w o 2 w
<[ | Z resinel) | £ sher] we

(I,J)eP (I,J)eP
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Main Ideas Behind the Proof and Estimates

® Apply the Cauchy-Schwarz in ¢* and Hélder in L? (w), to obtain

IBP(f,g)I=|/Rd{ S MY A7 £ () f;g<x>} o (2)

(I,J)eP

S/R( S |84T o 89 ) ()] (Z |Ag;g<x)|2) do (z)

(I,J)eP (I,J)eP

> 1859 @)
(I,J)eP

Nl=

(I,J)eP

< (2 |A7TA(0A?f)(x)I2>

LP(w) LP' (w)

B. D. Wick (WUSTL)



Main Ideas Behind the Proof and Estimates

® Apply the Cauchy-Schwarz in ¢* and Hélder in L? (w), to obtain

(I,J)eP

IBp(f,g)I=|/Rd{ S MY A7 £ (@) f;g<x>} do (v)

(I,J)eP (I,J)eP

S/R( S |84T o 89 ) ()] (Z |Ag;g<x)|2> do (z)

3 3
<l X a7 n @] S A% (@)
(I,7)eP Lo(w) (I,J)eP o
- H‘{AgT)\(U A7 f)}(IyJ)EP 221l Lp (w) H {Agg}(fy-f)ep ellre )
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Main Ideas Behind the Proof and Estimates

* The second factor is controlled by ||g||, . () Provided the pairs
(I,J) € P are pigeonholed so that only a bounded number of I's
are paired with a given J.
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Main Ideas Behind the Proof and Estimates

* The second factor is controlled by ||g||, . () Provided the pairs
(I,J) € P are pigeonholed so that only a bounded number of I's
are paired with a given J.

® To handle the first factor we need to manipulate the sequence

{A“‘;T)‘(a AN f)}(I o so as to apply one of the quadratic

hypotheses.
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Main Ideas Behind the Proof and Estimates

* The second factor is controlled by ||g||, . () Provided the pairs
(I,J) € P are pigeonholed so that only a bounded number of I's
are paired with a given J.

® To handle the first factor we need to manipulate the sequence

{A“‘;T)‘(a AN f)}(I o so as to apply one of the quadratic

hypotheses.
® Some of the standard proof ingredients in this setting appear:
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Main Ideas Behind the Proof and Estimates

* The second factor is controlled by ||g||, . () Provided the pairs
(I,J) € P are pigeonholed so that only a bounded number of I's
are paired with a given J.

® To handle the first factor we need to manipulate the sequence

{A“‘;T)‘(a AN f)}(l o so as to apply one of the quadratic

hypotheses.
® Some of the standard proof ingredients in this setting appear:

® Use of random dyadic grids and good/bad intervals of Nazarov,
Treil and Volberg.
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Main Ideas Behind the Proof and Estimates

* The second factor is controlled by ||g||, . () Provided the pairs
(I,J) € P are pigeonholed so that only a bounded number of I's
are paired with a given J.

® To handle the first factor we need to manipulate the sequence

{A“‘;T)‘(g AN f)}(l o so as to apply one of the quadratic

hypotheses.
® Some of the standard proof ingredients in this setting appear:
® Use of random dyadic grids and good/bad intervals of Nazarov,

Treil and Volberg.
¢ Control of paraproduct type operators by the Carleson Embedding
Theorem and the testing conditions.
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Main Ideas Behind the Proof and Estimates

* The second factor is controlled by ||g||, . () Provided the pairs
(I,J) € P are pigeonholed so that only a bounded number of I's
are paired with a given J.

® To handle the first factor we need to manipulate the sequence

{A?T)‘(g AN f)}(l o so as to apply one of the quadratic

hypotheses.
® Some of the standard proof ingredients in this setting appear:

® Use of random dyadic grids and good/bad intervals of Nazarov,
Treil and Volberg.

¢ Control of paraproduct type operators by the Carleson Embedding
Theorem and the testing conditions.

® Square function estimates, and variants, are used to control the
factor involving ||g| 1 (-
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The daydreams of cat herders

(Modified from the Original Dr. Fun Comic)
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of cat herdel

(Modified from the Original Dr. Fun Comic)

Thanks for the opportunity to speak at the ITUPUI Colloquium!
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The daydreams of cat herders

(Modified from the Original Dr. Fun Comic)

Thanks for the opportunity to speak at the ITUPUI Colloquium!
Thanks to the Organizers for Arranging MWAA!
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