Embeddability of real hyersurfaces into hyperquadrics and spheres

Ming Xiao

University of California San Diego

Midwestern Workshop on Asymptotic Analysis IUPUI, Indianapolis October 7th, 2017

Question

When a real hypersurface $M \subset \mathbb{C}^n$ admits a holomorphic transversal embedding into a hyperquadric $\mathbb{H}^{2N-1}_l \subset \mathbb{C}^N$ of possibly larger dimension?

• Hyperquadrics:

$$\mathbb{H}_{l}^{2N-1} := \{ -\sum_{i=1}^{l} |z_{i}|^{2} + \sum_{i=l+1}^{N} |z_{i}|^{2} = 1 \} \subset \mathbb{C}^{N}.$$

Transversal map F:

dF does not map $T_p\mathbb{C}^n$ to $T_{F(p)}\mathbb{H}_l^{2N-1}$ at $p\in M$.

Chern-Moser thoery

- Chern-Moser thoery
- Various embedding theorems in geometry

Various embedding theorems in geometry

- Differential Geometry: The Whitney embedding theorem
 Embedding of general smooth manifolds into their models (real Euclidean spaces)
- Riemannian Geometry: The Nash embedding theorem
 Embedding of general Riemannian manifolds into their models (real Euclidean spaces)

- Stein Space theory: The Remmert embedding theorem
 Embedding of Stein manifolds into their models (complex Euclidean spaces)
- Pseudoconformal geometry: One may ask whether there is such an analogue.
 - Embedding of hypersurfaces into their models (hyperquadrics)

Webster, 1978

Theorem

(Webster, 1978, Duke Math. J.) Every real-algebraic Levi-nondegenerate real hypersurface $M \subset \mathbb{C}^n$ is transversally holomorphically embeddable into a hyperquadric of suitable dimension and signature.

However, not every real analytic Levi-nondegenerate hypersurface can be transversally holomorphically embedded into a hyperquadric of sufficient large dimension.

- Forstnerić 1986, Faran 1988
 Most real analytic strongly pseudoconvex hypersurface cannot be holomorphically embedded into any sphere.
- Forstnerć 2004
 Most real-analytic hypersurfaces do not admit a transversal holomorphic embedding into any real algebraic hypersurface, in particular, any hyperquadrics.

Explicit Example:

Theorem

(Zaitsev, 2008, Math. Ann.) The hypersurface in \mathbb{C}^2 given by

$$\mathrm{Im} w = |z|^2 + \mathrm{Re} \sum_{k \geq 2} z^k \overline{z}^{(k+2)!}, (z, w) \in \mathbb{C}^2, |z| < \epsilon.$$

for any $0 < \epsilon \le 1$ is not transversally holomorphically embeddable into a hyperquadric of any dimension.

Motivated by Webster's theorem and embedding theorems in geometry:

Equivalently,

Is there a uniform bound for the minimal embedding dimension of M in terms of n:

Theorem

(Kossovskiy-X., to appear in Advances in Math.) For any integers N > n > 1, there exists $\mu = \mu(n, N)$ such tha a Zariski generic real-algebraic hypersurface $M \subset \mathbb{C}^n$ of degree $k \geq \mu$ is not transversally holomorphically embeddable into any hyperquadric $\mathbb{H}^{2N-1}_{l} \subset \mathbb{C}^{N}$.

• We can give an explicit bound for $\mu(n, N)$:

$$\mu(n,N)=2+N-n+\left(\begin{array}{c}N(N+1)/2+p(n,N)\\p(n,N)\end{array}\right),$$
 where $p(n,N)=n-1+\frac{(n-1)n}{2}\left(\begin{array}{c}N-1\\n-1\end{array}\right).$

• We can give an explicit bound for $\mu(n, N)$:

$$\mu(n,N)=2+N-n+\left(\begin{array}{c}N(N+1)/2+p(n,N)\\p(n,N)\end{array}\right),$$
 where $p(n,N)=n-1+\frac{(n-1)n}{2}\left(\begin{array}{c}N-1\\n-1\end{array}\right).$

• When n = 2, N = 3, we have $\mu(2,3) = 18$.

We now concentrate on the strongly pseudoconvex case:

Question

Is every compact real-algebraic strongly pseudoconvex real hypersuraface in \mathbb{C}^n holomorphically embeddable into a sphere of sufficiently large dimension?

$$M_{\epsilon} := \{(z, w) \in \mathbb{C}^2 : \varepsilon_0(|z|^8 + c \operatorname{Re}|z|^2 z^6) + |w|^2 + |z|^{10} + \varepsilon |z|^2 - 1 = 0\},$$
 where $0 < \varepsilon < 1, 0 < \varepsilon_0 << 1, 2 < c < \frac{16}{7}.$

In Huang-Li-X., 2015, I.M.R.N, the hypersurfaces $M_{\epsilon} \subset \mathbb{C}^2$ are constructed:

$$\begin{split} & \textit{M}_{\epsilon} := \{ (\textit{z}, \textit{w}) \in \mathbb{C}^2 : \varepsilon_0(|\textit{z}|^8 + \textit{c} \text{Re}|\textit{z}|^2 \textit{z}^6) + |\textit{w}|^2 + |\textit{z}|^{10} + \varepsilon |\textit{z}|^2 - 1 = 0 \}, \\ & \text{where } 0 < \varepsilon < 1, 0 < \varepsilon_0 << 1, 2 < \textit{c} < \frac{16}{7}. \end{split}$$

• M_{ϵ} is a real algebraic hypersurface.

$$\begin{split} & \textit{M}_{\epsilon} := \{(\textit{z}, \textit{w}) \in \mathbb{C}^2 : \varepsilon_0(|\textit{z}|^8 + \textit{c} \text{Re}|\textit{z}|^2 \textit{z}^6) + |\textit{w}|^2 + |\textit{z}|^{10} + \varepsilon|\textit{z}|^2 - 1 = 0\}, \\ & \text{where } 0 < \varepsilon < 1, 0 < \varepsilon_0 << 1, 2 < \textit{c} < \frac{16}{7}. \end{split}$$

- M_{ϵ} is a real algebraic hypersurface.
- For small $\varepsilon, \varepsilon_0$, M_{ε} is diffeomorphic to $\mathbb{S}^3 \subset \mathbb{C}^2$.

$$\begin{split} & \textit{M}_{\epsilon} := \{(\textit{z}, \textit{w}) \in \mathbb{C}^2 : \varepsilon_0(|\textit{z}|^8 + \textit{c} \text{Re}|\textit{z}|^2 \textit{z}^6) + |\textit{w}|^2 + |\textit{z}|^{10} + \varepsilon|\textit{z}|^2 - 1 = 0\}, \\ & \text{where } 0 < \varepsilon < 1, 0 < \varepsilon_0 << 1, 2 < \textit{c} < \frac{16}{7}. \end{split}$$

- M_{ϵ} is a real algebraic hypersurface.
- For small $\varepsilon, \varepsilon_0$, M_{ε} is diffeomorphic to $\mathbb{S}^3 \subset \mathbb{C}^2$.
- For $0 < \varepsilon < 1$, M_{ε} is strongly pseudoconvex.

$$\begin{split} & \textit{M}_{\epsilon} := \{(\textit{z}, \textit{w}) \in \mathbb{C}^2 : \varepsilon_0(|\textit{z}|^8 + \textit{c} \text{Re}|\textit{z}|^2 \textit{z}^6) + |\textit{w}|^2 + |\textit{z}|^{10} + \varepsilon|\textit{z}|^2 - 1 = 0\}, \\ & \text{where } 0 < \varepsilon < 1, 0 < \varepsilon_0 << 1, 2 < \textit{c} < \frac{16}{7}. \end{split}$$

- M_{ϵ} is a real algebraic hypersurface.
- For small $\varepsilon, \varepsilon_0$, M_{ε} is diffeomorphic to $\mathbb{S}^3 \subset \mathbb{C}^2$.
- For $0 < \varepsilon < 1$, M_{ε} is strongly pseudoconvex.
- M_0 has a Kohn-Nirenberg point at (0,1).

Theorem

(Huang-X., 2016) For sufficient small $\varepsilon, \varepsilon_0$, M_ε cannot be locally holomorphically embedded into any sphere. More precisely, any holomorphic map that sends an open piece of M_ε to a unit sphere must be constant.

Theorem

(Huang-X., 2016) For sufficient small $\varepsilon, \varepsilon_0$, M_ε cannot be locally holomorphically embedded into any sphere. More precisely, any holomorphic map that sends an open piece of M_ε to a unit sphere must be constant.

We thus give a negative answer to the question:

Theorem

(Huang-X., 2016) For sufficient small $\varepsilon, \varepsilon_0$, M_ε cannot be locally holomorphically embedded into any sphere. More precisely, any holomorphic map that sends an open piece of M_ε to a unit sphere must be constant.

We thus give a negative answer to the question:

There exist compact, real algebraic, strongly pseudoconvex hypersurfaces that cannot be locally holomorphically embedded into any sphere.

Proof:

Proof:

Let F be a holomorphic map sending an open piece of M_{ε} to some unit sphere \mathbb{S}^{2N-1} .

Proof:

Let F be a holomorphic map sending an open piece of M_{ε} to some unit sphere \mathbb{S}^{2N-1} .

Proof:

Let F be a holomorphic map sending an open piece of M_{ε} to some unit sphere \mathbb{S}^{2N-1} .

Step 1: Rationality of *F*.

Step 1 (a): Algebraicity of F.
 Huang's algebraicity theorem.

Proof:

Let F be a holomorphic map sending an open piece of M_{ε} to some unit sphere \mathbb{S}^{2N-1} .

- Step 1 (a): Algebraicity of F.
 Huang's algebraicity theorem.
- Step 1 (b): Single-valueness of F. monodromy argument.

Proof:

Let F be a holomorphic map sending an open piece of M_{ε} to some unit sphere \mathbb{S}^{2N-1} .

- Step 1 (a): Algebraicity of F.
 Huang's algebraicity theorem.
- Step 1 (b): Single-valueness of F.
 monodromy argument.
 A lemma of Huang-Zaitsev:
 Topology of the complement of the branching variety

Proof:

Let F be a holomorphic map sending an open piece of M_{ε} to some unit sphere \mathbb{S}^{2N-1} .

- Step 1 (a): Algebraicity of F.
 Huang's algebraicity theorem.
- Step 1 (b): Single-valueness of F.
 monodromy argument.
 A lemma of Huang-Zaitsev:
 Topology of the complement of the branching variety
- Step 1 (c): A theorem of Chiappari ⇒ F extends to a holomorphic map in a neighborhood of D_e.

Step 2: Study $Q_{p_0} \cap M_{\varepsilon}$, where $p_0 = (0, 1)$ is the Kohn-Nirenberg point of M_0 .

Step 2: Study $Q_{p_0} \cap M_{\varepsilon}$, where $p_0 = (0, 1)$ is the Kohn-Nirenberg point of M_0 .

• Note p_0 is on M_{ε} for every $0 \le \varepsilon < 1$. Moreover,

$$Q_{p_0} = \{w = 1\}.$$

Recall

$$\mathit{M}_{\varepsilon}: \varepsilon_{0}(|z|^{8}+c\mathrm{Re}|z|^{2}z^{6})+|w|^{2}+|z|^{10}+\varepsilon|z|^{2}-1=0.$$

Step 2: Study $Q_{p_0} \cap M_{\varepsilon}$, where $p_0 = (0, 1)$ is the Kohn-Nirenberg point of M_0 .

• Note p_0 is on M_{ε} for every $0 \le \varepsilon < 1$. Moreover,

$$Q_{p_0} = \{w = 1\}.$$

Recall

$$M_{\varepsilon}: \varepsilon_0(|z|^8 + c \text{Re}|z|^2 z^6) + |w|^2 + |z|^{10} + \varepsilon |z|^2 - 1 = 0.$$

• There is $\widetilde{p} \in Q_{p_0}$ such that $\widetilde{p} \in D_0$.

Step 2: Study $Q_{p_0} \cap M_{\varepsilon}$, where $p_0 = (0, 1)$ is the Kohn-Nirenberg point of M_0 .

• Note p_0 is on M_{ε} for every $0 \le \varepsilon < 1$. Moreover,

$$Q_{p_0} = \{w = 1\}.$$

Recall

$$M_{\varepsilon}: \varepsilon_0(|z|^8 + c \text{Re}|z|^2 z^6) + |w|^2 + |z|^{10} + \varepsilon |z|^2 - 1 = 0.$$

- There is $\widetilde{p} \in Q_{p_0}$ such that $\widetilde{p} \in D_0$.
- For $0 < \varepsilon << 1$, $\widetilde{p} \in D_{\varepsilon}$.

Step 2: Study $Q_{p_0} \cap M_{\varepsilon}$, where $p_0 = (0, 1)$ is the Kohn-Nirenberg point of M_0 .

• Note p_0 is on M_{ε} for every $0 \le \varepsilon < 1$. Moreover,

$$Q_{p_0} = \{w = 1\}.$$

Recall

$$M_{\varepsilon}: \varepsilon_0(|z|^8 + c \mathrm{Re}|z|^2 z^6) + |w|^2 + |z|^{10} + \varepsilon |z|^2 - 1 = 0.$$

- There is $\widetilde{p} \in Q_{p_0}$ such that $\widetilde{p} \in D_0$.
- For $0 < \varepsilon << 1$, $\widetilde{p} \in D_{\varepsilon}$.
- $Q_{p_0} \cap M_{\varepsilon}$ is of real dimension one \Rightarrow $Q_{p_0} \cap M_{\varepsilon}$ has an accumulation point q_0 .

Step 3: *F* is a constant map.

• F preserves the Segre varieties:

$$F(Q_{p_0}\cap U)\subset \widetilde{Q}_{F(p_0)}.$$

Step 3: *F* is a constant map.

• F preserves the Segre varieties:

$$F(Q_{p_0}\cap U)\subset \widetilde{Q}_{F(p_0)}.$$

ullet By unique continuation, if $q\in Q_{p_0}\cap M_{arepsilon}$, then

$$F(q) \in \widetilde{Q}_{F(p_0)} \cap \mathbb{S}^{2N-1} = \{F(p_0)\}.$$

 \Rightarrow F is not one-to-one near q_0 , where q_0 is an accumulation point of $Q_{p_0} \cap M_{\epsilon}$.

Step 3: *F* is a constant map.

• F preserves the Segre varieties:

$$F(Q_{p_0}\cap U)\subset \widetilde{Q}_{F(p_0)}.$$

ullet By unique continuation, if $q\in Q_{p_0}\cap M_{arepsilon}$, then

$$F(q) \in \widetilde{Q}_{F(p_0)} \cap \mathbb{S}^{2N-1} = \{F(p_0)\}.$$

- \Rightarrow *F* is not one-to-one near q_0 , where q_0 is an accumulation point of $Q_{p_0} \cap M_{\epsilon}$.
- F is a constant map.

Step 3: *F* is a constant map.

• F preserves the Segre varieties:

$$F(Q_{p_0}\cap U)\subset \widetilde{Q}_{F(p_0)}.$$

ullet By unique continuation, if $q\in Q_{p_0}\cap M_{arepsilon}$, then

$$F(q) \in \widetilde{Q}_{F(p_0)} \cap \mathbb{S}^{2N-1} = \{F(p_0)\}.$$

- \Rightarrow F is not one-to-one near q_0 , where q_0 is an accumulation point of $Q_{p_0} \cap M_{\epsilon}$.
- F is a constant map.
 Suppose not. Hopf lemma type argument ⇒ F is local embedding at q₀.

Step 3: *F* is a constant map.

• F preserves the Segre varieties:

$$F(Q_{p_0}\cap U)\subset \widetilde{Q}_{F(p_0)}.$$

ullet By unique continuation, if $q\in Q_{p_0}\cap M_{arepsilon}$, then

$$F(q) \in \widetilde{Q}_{F(p_0)} \cap \mathbb{S}^{2N-1} = \{F(p_0)\}.$$

- \Rightarrow *F* is not one-to-one near q_0 , where q_0 is an accumulation point of $Q_{p_0} \cap M_{\epsilon}$.
- F is a constant map.

Suppose not. Hopf lemma type argument $\Rightarrow F$ is local embedding at q_0 .

This is a contradiction.

Remarks

Each

$$M_{\varepsilon}$$
: $\varepsilon_0(|z|^8 + c\text{Re}|z|^2z^6) + |w|^2 + |z|^{10} + \varepsilon|z|^2 - 1 = 0$

can be transversally holomorphically embedded into the hyperquadric in \mathbb{C}^6 with one negative Levi eigenvalue:

$$\mathbb{H}_1^{11} = \left\{ (z_1, ..., z_6) \in \mathbb{C}^6 : \sum_{i=1}^5 |z_i|^2 - |z_6|^2 = 1 \right\}$$

by

$$F(z,w) = \left(\sqrt{\varepsilon_0}z^4, z^5, \sqrt{\varepsilon}z, w, \frac{1}{2}\sqrt{\varepsilon_0c}(z^7+z), \frac{1}{2}\sqrt{\varepsilon_0c}(z^7-z)\right).$$

Remarks

Each

$$M_{\varepsilon}$$
: $\varepsilon_0(|z|^8 + c\text{Re}|z|^2z^6) + |w|^2 + |z|^{10} + \varepsilon|z|^2 - 1 = 0$

can be transversally holomorphically embedded into the hyperquadric in \mathbb{C}^6 with one negative Levi eigenvalue:

$$\mathbb{H}_1^{11} = \left\{ (z_1, ..., z_6) \in \mathbb{C}^6 : \sum_{i=1}^5 |z_i|^2 - |z_6|^2 = 1 \right\}$$

by

$$F(z,w) = \left(\sqrt{\varepsilon_0}z^4, z^5, \sqrt{\varepsilon}z, w, \frac{1}{2}\sqrt{\varepsilon_0c}(z^7+z), \frac{1}{2}\sqrt{\varepsilon_0c}(z^7-z)\right).$$

A lot more examples can be constructed.

Thank you very much for your attention!