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The Korteweg-de Vries equation

The KdV equation on u(x , t):

ut =
3

2
uux +

1

4
uxxx .

The KdV and related equations occur in many areas of mathematics:

Physically, the KdV equation describes weakly nonlinear waves in
various media, such as shallow water waves.

KdV was the first equation in the modern theory of integrable
systems.

Counting problems in algebraic geometry.

Major open problem: For what classes of initial data can we solve the
initial value problem for KdV?
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Lax representation for KdV

The KdV equation has a Lax representation:

∂L

∂t
= [L,A],

where L is the Schrödinger operator and A is an auxiliary operator

L = −∂2
x + u, A = ∂3

x −
3

2
u∂x −

3

4
ux = [(−L)3/2]+.

KdV is the consistency condition for an overdetermined linear system:

Lψ = Eψ, ∂tψ = Aψ,

on a complex-valued function ψ(x ,E , t), where E is a spectral parameter.

The time evolution preserves the spectrum of L, and the study of KdV is
closely related to the spectral theory of L.
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Spectral theory of L and the initial value problem for KdV

To solve the initial value problem for KdV, we need to study the spectral
theory of the one-dimensional Schrödinger operator L:

Lψ = [−∂2
x + u(x)]ψ = Eψ, ψ bounded.

There are two important classes of potentials u(x) for which the spectral
theory of L is well-understood, and the corresponding initial value
problem has an effective solution:

If u(x) vanishes sufficiently fast as x → ±∞, we can solve the initial
value problem for KdV by using the inverse scattering transform (IST).

If u(x) is periodic, we can approximate it and solve the initial value
problem by using finite-gap potentials.

Motivating question. What is the relationship between the IST and
finite-gap solutions?
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u(x) rapidly vanishing: scattering data

Suppose that u(x) rapidly vanishes at infinity:

u(x) = O(1/x2+ε), x → ±∞.

We consider the Schrödinger equation

Lψ = [−∂2
x + u(x)]ψ = Eψ, ψ bounded on R.

For E = k2 ≥ 0, the solution space has dimension 2, so there is a solution

ψ(x , k) =

{
e−ikx + c(k)e ikx + o(1) as x → +∞,

d(k)e−ikx + o(1) as x → −∞.

For finitely many negative E = −κ2
n, n = 1, . . . ,N, there is one solution:

ψn(x) =

{
eκnx(1 + o(1)) as x → −∞,

e−κnx(bn + o(1)) as x →∞.

The set s = {c(k), κn, bn} is the scattering data of the potential u(x).
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GGKM equations and the inverse scattering transform

If u(x , t) satisfies KdV, then the spectral data s(t) evolves trivially:

c(k , t) = c(k)e8ik3t , κn(t) = κn, bn(t) = bne8κ3
nt .

We can solve the initial value problem for KdV for vanishing u(x):

u(x , 0)→ s(0)→ s(t)→ u(x , t).

We can reconstruct u(x , t) from its scattering data s = {c(k), κn, bn}
using the inverse scattering transform.

Introduce the function F (x , t), where Mn is the L2-norm ψn(x).

F (x , t) =
1

2π

∫ ∞
−∞

c(k , t)e ikxdk +
N∑

n=1

M2
ne−κnx ,

where the Mn are the L2-norms of the eigenfunctions ψn(x).

Solve the Marchenko equation for K (x , y , t):

K (x , y , t) + F (x + y , t) +

∫ ∞
x

K (x , z , t)F (z + y , t)dz = 0.

Find the potential
u(x , t) = −∂xK (x , x , t).
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Bargmann potentials and N-soliton solutions of KdV

The Marchenko equation can be solved explicitly when c(k) = 0.

If s = {0, κn, bn}, n = 1, . . . ,N, then u(x) is a reflectionless Bargmann
potential and u(x , t) is an N-soliton solution of KdV.

For N = 1 we get a traveling solitary wave:

−u(x , t) =
2κ2

cosh2 κ(x − 4κ2t − x0)
.

In general we have N interacting solitary waves, given by the Bargmann
formula

−u(x , t) = 2∂2
x log det |Mnm|,

Mnm = δnm+cne8κ3
nt

e−(κn+κm)x

κn + κm
, cn =

bn

ia′(iκn)
> 0, a(k) =

N∏
n=1

k − iκn
k + iκn

.
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u(x) periodic: finite-gap theory

Suppose that u(x) is periodic:

u(x + T ) = u(x).

We consider the Schrödinger equation

Lψ = [−∂2
x + u(x)]ψ = Eψ, ψ bounded on S1 = R/T .

The spectrum of L is described by Bloch–Floquet theory consists of an
infinite sequence of closed intervals

S = [λ1, λ2] ∪ [λ3, λ4] ∪ [λ5, λ6] ∪ · · · , λ1 < λ2 < λ3 < · · ·

For each E ∈ S, there is a two-dimensional space of solutions
(one-dimensional at boundary points λi ).

The eigenfunction ψ(x , k) is defined on the spectral curve C : a
hyperelliptic Riemann surface of infinite genus that is a double cover of
the complex plane branched over the points λ1, λ2, . . .
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Finite-gap potentials

For an L2-dense subset of periodic potentials, the spectrum has only
finitely many gaps

S = [λ1, λ2] ∪ · · · ∪ [λ2g−2, λ2g−1] ∪ [λ2g ,∞)

The spectral curve C is an algebraic Riemann surface of genus g .

The eigenfunction ψ(x , k) has a pole divisor D of degree g on C .

ψ(x , k) and u(x) can be reconstructed from C and D.

If u(x , t) satisfies KdV, then C does not depend on t, while D evolves
linearly on the Jacobian variety Jac(C ). The solution is given by the
Matveev–Its formula

u(x , t) = 2∂2
x ln θ(xU + tV + Z ) + c ,

where θ is the theta function of Jac(C ).

For generic spectral data, this solution is quasi-periodic in x and t.
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Genus one solutions

The solutions corresponding to genus one curves can be found by looking
for traveling wave solutions of KdV:

1

4
uxxx =

3

2
uux − ut , u(x , t) = f (x − ct).

f ′′′ = 6ff ′ + 4cf ′

f ′′ = 3f 2 + 4cf + c1,

1

2
(f ′)2 = f 3 + 2cf 2 + c1f + c2.

We solve this in terms of the Weierstrass function ℘ of the associated
elliptic curve and obtain the cnoidal wave solution, known since the 19th
century:

u(x , t) = 2℘(x + iω′ − ct) + const
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Cnoidal wave

u(x , t) = 2℘(x + iω′ − ct) + const
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IST and finite-gap solutions

What is the relationship between the IST and finite-gap solutions?

Mumford: degenerating the spectral curve to a rational nodal curve
reduces N-gap solutions to N-soliton solutions.

Idea. View finite-gap solutions as limits of soliton solutions as N →∞.

Lundina, Marchenko: Proved that periodic finite-gap solutions are
contained in a suitable closure of the set of N-soliton solutions (no
effective formulas).

Key difference. The finite-gap method is symmetric in x → −x , while
the IST is not. We can define an equivalent version of IST by considering
the scattering from the left, but there is a choice to be made.
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Previous work

Krichever: a partial degeneration gives solitons on a finite-gap
background.

Egorova, Grunert, Teschl: inverse scattering transform on a finite-gap
background.

Trogdon, Deconinck: Riemann–Hilbert problem for finite-gap solutions
and finite-gap solutions plus solitons.

Binder, Damanik, Goldstein, Lukic: proved the existence of the solution
of the initial value problem for a certain class of quasi-periodic initial
data.
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Motivation: Fourier transform vs. d’Alembert’s formula

There are two approaches to the wave equation

utt = uxx , −∞ < x <∞.

For initial data u(x , 0) = A(x), ux(x , 0) = B(x), we find their Fourier
transforms, apply time evolution, and then find the inverse Fourier
transform.

Alternatively we can use the general formula

u(x , t) = f (x + t) + g(x + t),

which is local in x and t. Matching the initial data gives d’Alembert’s
formula:

u(x , t) =
1

2
[A(x − t) + A(x + t)] +

1

2

∫ x+t

x−t
B(s)ds.

The IST is a nonlinear version of the Fourier transform.

The dressing method is as a nonlinear version of d’Alembert’s formula.
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The dressing method

The idea of the dressing method is to construct solutions u(x) of KdV by
specifying the analytic properties of the corresponding eigenfunction of
the Schrödinger equation:

−ψxx + u(x)ψ = k2ψ, ψ(x , k)→ e−ikx as |k | → ∞.

Substitute ψ(x , k) = χ(x , k)e−ikx :

χxx − 2ikχx − u(x)χ = 0, χ(x , k)→ 1 as |k| → ∞.

We encode the analytic properties of χ in a ∂-problem:

∂χ

∂k
= ie2ikxT (k)χ(−k , x), T (k) = −T (−k).

The corresponding solution of KdV is equal to

u(x) = 2
d

dx
χ0(x), χ(x , k) = 1 +

iχ0(x)

k
+ · · ·

Adding time dependence corresponds to replacing 2ikx with 2ikx + 8ik3t.
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Analytic properties of χ

The class of initial data determines the analytic properties of χ:

If u(x) is a Bargmann potential, then χ is rational with simple poles on
the negative imaginary axis.

If u(x) is rapidly vanishing, then χ has poles on the negative imaginary
axis and a jump along the real axis.

If u(x) is finite-gap, then χ has jumps along the imaginary axis and lifts
to an algebraic function on the corresponding hyperelliptic curve.
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Bargmann potentials via dressing method, 1st attempt

If u(x) is a Bargmann potential with spectral data s = {0, κn, cn}, then χ
is a rational function with simple poles along the negative imaginary axis
at −iκn:

χ(x , k) = 1 + i
N∑

n=1

χn(x)

k − iκn
.

This function satisfies the ∂-problem

∂χ

∂k
= ie2ikxT (k)χ(−k , x), T (k) =

N∑
n=1

cnδ(k − iκn).

The χn(x) and u(x) are determined by the system

χn(x) = cnχ(x ,−iκn)e−2κnx , u(x) = 2
d

dx

N∑
n=1

χn(x)
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Naive limit N →∞: replace poles with cuts

Krichever, 1980s: define the limit N →∞ by allowing the poles of χ to
coalesce into a jump along the negative imaginary axis.

The function χ then satisfies a singular integral equation, and its
approximations by Riemann sums produce N-soliton solutions.

The resulting potentials u(x) are bounded as x → −∞ but are
decreasing as x → +∞.

We drop the physical assumption that there are poles only along the
negative part of the imaginary axis.
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Bargmann potentials via dressing method, 2nd attempt

Let κ1, . . . , κN and c1, . . . , cn be nonzero real numbers satisfying
κm 6= ±κn for all m 6= n, cn/κn > 0 for all n. Consider the ∂-problem

∂χ

∂k
= ie2ikxT (k)χ(−k , x), T (k) =

N∑
n=1

cnδ(k − iκn).

There is a unique rational function χ satisfying this problem:

χ(x , k) = 1 + i
N∑

n=1

χn(x)

k − iκn
, χn(x) = cnχ(x ,−iκn)e−2κnx .

The corresponding potential u(x) is a reflectionless Bargmann potential
with spectrum {−κ2

1, . . . ,−κ2
N}. Furthermore, for each n, replacing

κ̃i =

{
κi , i 6= n,
−κn, i = n,

c̃i =


(
κi − κn
κi + κn

)2

ci , i 6= n,

−4π2κ2
n/cn, i = n,

does not change the potential u(x).
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The limit N →∞: replace poles with cuts

Fix 0 < k1 < k2, and let R1 and R2 be two positive functions on [k1, k2].
Consider the kernel

T (k) = iδ(kR)[R1(kI )− R2(−kI )], k = kR + ikI

We consider a function χ satisfying the ∂-problem

∂χ

∂k
= ie2ikxT (k)χ(−k , x).

It is analytic on the k-plane except for two cuts [ia, ib] and [−ib,−ia].

Equivalently, we are solving a RH problem on Ξ(k) = [χ(k) χ(−k)]T :

Ξ+(ip) = M(p)Ξ−(ip), Ξ+(−ip) = MT (p)Ξ−(−ip), p ∈ [a, b],

M(x , t, p) =
1

1 + R1R2

[
1− R1R2 2iR1e−2px−8p3t

2iR2e2px+8p3t 1− R1R2

]
The corresponding solution u(x , t) of the KdV equation

u(x , t) = 2∂xχ0(x , t), χ(x , t, k) = 1 +
iχ0(x , t)

k
+ O(k−2)

is bounded as x → ±∞ and has the spectrum [−b2,−a2] ∪ [0,∞).
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Numerical simulations for constant R1 and R2

We can approximately solve the Riemann–Hilbert problem using N-soliton
solutions. We only consider constant R1 and R2 on [a, b] = [2, 4].
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Numerical simulations for constant R1 and R2

We can approximately solve the Riemann–Hilbert problem using N-soliton
solutions. We only consider constant R1 and R2 on [a, b] = [2, 4].
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The Kadomtsev–Petviashvili equation

The KP-II equation describes quasi-one-dimensional shallow water waves:

∂

∂x

(
−4

∂u

∂t
+
∂3u

∂x3
+ 6u

∂u

∂x

)
+ 3

∂2u

∂y 2
= 0.

It has the following Lax representation

[∂y − L, ∂t − A] = 0,

where L and A are the same auxiliary operators as for KdV:

L = −∂2
x + u, A = ∂3

x −
3

2
u∂x −

3

4
ux = [(−L)3/2]+.
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Solutions of KP-II via the dressing method

We consider the following ∂-problem on a function χ(k, r), where
r = (x , y , t):

∂χ(k , r)

∂k
= πδ(b)

∫ ∞
−∞

χ(α, r)R0(α, a)eΦ(α,r)−Φ(a,r)dα,

k = a + bi , Φ(k , r) = kx + k2y + k3t, R0(α, a) = R0(α, a).

The function χ has a jump along the real axis. If the ∂-problem has a
unique solution, then

u = 2
∂χ1

∂x
, χ(k , r) = 1 +

χ1(r)

k
+ O

(
1

k2

)
is a real-valued solution of the KP-II equation.
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Degenerate dressing kernel

The function χ satisfies the following ∂-problem:

∂χ(k , r)

∂k
= πδ(b)

∫ ∞
−∞

χ(α, r)R0(α, a)eΦ(α,r)−Φ(a,r)dα,

We consider a kernel of the following form:

R0(α, a) =
N∑

n=1

fn(α)gn(a)

with linearly independent functions gn(a). Substituting

χ(k, r) = 1 +

∫ ∞
−∞

ϕ(a, r)e−Φ(a,r)

k − s
ds, ϕ(a, r) =

N∑
n=1

ϕn(r)gn(a),

we obtain a linear system on the ϕn which we can solve explicitly, and
obtain a solution of KP-II.
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Solution with degenerate dressing kernel

The following function u(x , y , t) satisfies the KP-II equation:

u(x , y , t) = 2∂2
x log

∣∣∣∣∣∣∣∣
1 + ∂−1

x F1G1 ∂−1
x F1G2 · · · ∂−1

x F1GN

∂−1
x F2G1 1 + ∂−1

x F2G2 · · · ∂−1
x F2GN

· · · · · · · · · · · ·
∂−1
x FNG1 ∂−1

x FNG2 · · · 1 + ∂−1
x FNGN

∣∣∣∣∣∣∣∣ .
Here Fn(r) and Gn(r) are

Fn(r) =

∫ ∞
−∞

fn(α)eΦ(α,r)dα, Gn(r) =

∫ ∞
−∞

gn(a)e−Φ(a,r)da.

These functions satisfy:

∂Fn

∂y
=
∂2Fn

∂x2
,

∂Fn

∂t
=
∂3Fn

∂x3
,

∂Gn

∂y
= −∂

2Gn

∂x2
,

∂Gn

∂t
=
∂3Gn

∂x3
.
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The Wronskian method

There is a different method of constructing solutions of the KP-II
equation (Freeman, Nimmo). Let F̃1, . . . , F̃M be a linearly independent
set of solutions of the system

∂F̃n

∂y
=
∂2F̃n

∂x2
,

∂F̃n

∂t
=
∂3F̃n

∂x3
,

Then their Wronskian is a solution of KP-2:

u(r) = 2∂2
x log Wr(F̃1, . . . , F̃M) = 2∂2

x log

∣∣∣∣∣∣∣
F̃

(0)
1 · · · F̃

(0)
M

· · · · · · · · ·
F̃

(M−1)
1 · · · F̃

(M−1)
M

∣∣∣∣∣∣∣ .
We do not know what is the relationship between these methods.
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Two examples with N = 1

We assume that R has finite support and that χ is a rational function.

Suppose that

f (α) =
N1∑
i=1

Ciδ(α− αi ), g(a) = δ(a− a0), R(α, a) = f (α)g(a).

We get the following solution of KP-II:

u = 2∂2
x log

[
1 +

N1∑
i=1

Ci

a0 − αi
eΦ(αi ,r)−Φ(a1,r)

]
.

The same solution can be obtained from a 1× 1 Wronskian:

u = 2∂2
x log

[
eΦ(a1,r) +

N1∑
i=1

Ci

a0 − αi
eΦ(αi ,r)

]
= 2∂2

x log F̃ .
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Two examples with N = 1

Now suppose that

fn(α) = Cnδ(α− αn), gn(a) = δ(a− an), n = 1, . . . ,N,

where we assume that

a1 > · · · > aN > αN > · · · > α1, C1 > 0, . . .CN > 0.

In this case
u(r) = 2∂2

x log
∑

I⊂{1,...,N}

CI exp ΦI ,

where

ΦI =
k∑

j=1

[Φ(αij , r)− Φ(aij , r)],

and CI is a multiple of a Cauchy determinant

CI = Ci1 · · ·Cik

∏k
n=2

∏n−1
m=1(ain − aim)(αim − αin)∏k
n=1

∏k
m=1(ain − αim)

.
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The end

THANK YOU!
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