CR transversality of holomorphic maps into hyperquadrics

Yuan Zhang

Joint with Xiaojun Huang

Indiana University - Purdue University Fort Wayne, USA

MWAA, Fort Wayne, IN

Sept 19-20th, 2014

Let *M* be a connected smooth hypersurface in \mathbb{C}^n near *p*. $n \ge 2$. The CR tangent space of *M* at *p* is given by:

$$T_{\rho}^{(1,0)}M = \{X \in T_{\rho}M : JX = iX\}.$$

Here J is the complex structure of M at p.

Let (M, 0) be a germ of smooth CR hypersurface at 0. After a holomorphic change of coordinates, M is locally defined by

$$M = \{(z,w) \in \mathbf{C}^{n-1} \times \mathbf{C} : r = \Im w - \phi(z,\bar{z},\Re w) = \mathbf{0}\},\$$

where $\phi(0) = 0$, $d\phi(0) = 0$. See the book of Baouendi-Ebenfelt-Rothschild.

Let (M, 0) be a germ of smooth CR hypersurface at 0. After a holomorphic change of coordinates, M is locally defined by

$$M = \{(z,w) \in \mathbf{C}^{n-1} \times \mathbf{C} : r = \Im w - \phi(z,\bar{z},\Re w) = \mathbf{0}\},\$$

where $\phi(0) = 0, d\phi(0) = 0$. See the book of Baouendi-Ebenfelt-Rothschild.

Under the above regular coordinates (z, w),

$$T_0^{(1,0)}M = Span_{1 \le j \le n-1} \{ \frac{\partial}{\partial z_j} |_0 \}.$$

Examples of CR hypersurfaces: Levi-nondegenerate hypersurfaces

A smooth germ of a CR hypersurface M_{ℓ} in \mathbb{C}^n is called a Levi-nondegenerate hypersurface of signature ℓ if it is locally defined by

$$M_{\ell} = \{(z, w) \in \mathbf{C}^{n-1} \times \mathbf{C} : r = \Im w - |z|_{\ell}^{2} + O(3) = 0\}.$$

Here $|z|_{\ell}^2 = -\sum_{j=1}^{\ell} |z_j|^2 + \sum_{j=\ell+1}^{n-1} |z_j|^2$.

A smooth germ of a CR hypersurface M_{ℓ} in \mathbb{C}^n is called a Levi-nondegenerate hypersurface of signature ℓ if it is locally defined by

$$M_{\ell} = \{(z, w) \in \mathbf{C}^{n-1} \times \mathbf{C} : r = \Im w - |z|_{\ell}^2 + O(3) = 0\}.$$

Here $|z|_{\ell}^2 = -\sum_{j=1}^{\ell} |z_j|^2 + \sum_{j=\ell+1}^{n-1} |z_j|^2$.

Prototype - The hyperquadric in \mathbb{C}^n of signature ℓ .

$$H^n_\ell = \big\{ (z,w) \in \mathbf{C}^{n-1} \times \mathbf{C} : r = \Im w - |z|^2_\ell = 0 \big\}.$$

Let M and \tilde{M} be two connected smooth CR hypersurfaces in \mathbb{C}^n and \mathbb{C}^N , respectively. $2 \le n \le N$. Let F be a smooth CR map with $F(M) \subset \tilde{M}$.

Let M and \tilde{M} be two connected smooth CR hypersurfaces in \mathbb{C}^n and \mathbb{C}^N , respectively. $2 \le n \le N$. Let F be a smooth CR map with $F(M) \subset \tilde{M}$.

Question:

Understand the geometric conditions on M and \tilde{M} so that F(M) intersects with $T^{(1,0)}\tilde{M}$ at generic position.

Definition

 $F:(M,p)
ightarrow (ilde{M},F(p))$ is said to be CR transversal to $ilde{M}$ at p if

$dF(T_pM) \not\subset T_{F(p)}^{(1,0)} \tilde{M} \cup \overline{T_{F(p)}^{(1,0)} \tilde{M}}.$

Definition

 $F:(M,p)
ightarrow (ilde{M},F(p))$ is said to be CR transversal to $ilde{M}$ at p if

$$dF(T_pM) \not\subset T_{F(p)}^{(1,0)} \tilde{M} \cup T_{F(p)}^{(1,0)} \tilde{M}.$$

When the CR map F extends holomorphically to a full neighborhood of p in \mathbb{C}^n , then F is CR transversal to \tilde{M} at p iff

$$T_{F(p)}^{(1,0)}\tilde{M} + dF(T_p^{(1,0)}\mathbf{C}^n) = T_{F(p)}^{(1,0)}\mathbf{C}^N.$$

Assume M and \tilde{M} are defined by defining functions r, \tilde{r} in regular coordinates (z, w) and (\tilde{z}, \tilde{w}) , respectively. Let $F := (\tilde{f}, g)$ be a holomorphic map from a small neighborhood of \mathbb{C}^n into \mathbb{C}^N sending (M, 0) into $(\tilde{M}, 0)$.

Assume M and \tilde{M} are defined by defining functions r, \tilde{r} in regular coordinates (z, w) and (\tilde{z}, \tilde{w}) , respectively. Let $F := (\tilde{f}, g)$ be a holomorphic map from a small neighborhood of \mathbb{C}^n into \mathbb{C}^N sending (M, 0) into $(\tilde{M}, 0)$.

 $F \text{ is CR transversal to } \tilde{M} \text{ at } 0$ $\iff \frac{\partial g}{\partial w}(0) \neq 0.$

Assume M and \tilde{M} are defined by defining functions r, \tilde{r} in regular coordinates (z, w) and (\tilde{z}, \tilde{w}) , respectively. Let $F := (\tilde{f}, g)$ be a holomorphic map from a small neighborhood of \mathbb{C}^n into \mathbb{C}^N sending (M, 0) into $(\tilde{M}, 0)$.

$$F \text{ is CR transversal to } \tilde{M} \text{ at } 0$$
$$\iff \frac{\partial g}{\partial w}(0) \neq 0.$$

Notice that $\tilde{r} \circ F = a \cdot r$ for some smooth function a. F is CR transversal to \tilde{M} at 0 $\iff a(0) \neq 0$.

Equal dimensional case

 $F: (M,p) \to (\tilde{M},\tilde{p}).$ M, \tilde{M} are hypersurfaces in $\mathbb{C}^N.$ F is not constant.

- Pinčuk, 1974, Siberian Math. J.
 D, D̃ strongly pseudoconvex in Cⁿ, F : D → D̃ proper holomorphic, F ∈ C¹(D̄) ⇒ F is local biholomorphic. When F is a self holomorphic map between D, then it extends as a homeomorphism onto the boundary.
- Fornaess, 1978, Pacific J. Math.
 Let D, D
 [˜] be C² bounded pseudoconvex, F : D → D
 [˜] biholomorphic and F ∈ C²(D
 [˜]) ⇒ F : D
 [˜] → D
 [˜] is diffeomorphic.
- Baouendi-Rothschild, 1990, J. Diff. Geom.
 M is of finite type in the sense of Kohn-Bloom-Graham and *F* is of finite multiplicity ⇒ *F* is CR transversal.
- Baouendi-Rothschild, 1993, Invent. Math.
 M, *M* hypersurfaces of finite D'Angelo type at *p* and *p*, *M* is minimally convex at *p* ⇒ *F* is CR transversal.

 $F: (M, p) \to (\tilde{M}, \tilde{p}).$ M, \tilde{M} are hypersurfaces in \mathbb{C}^N . F is not constant.

- Baouendi-Huang-Rothschild, 1995, Math. Res. lett.
 M essentially finite at all points, Jac(F) ≠ 0 and F⁻¹(p̃) is compact
 ⇒ F is CR transversal.
- Huang-Pan, 1996, Duke. Math. J.
 M, *M* real analytic minimal hypersurfaces ⇒ the normal components of *F* is not flat.
- Lamel-Mir, 2006, Sci. China. *M* belongs to the class C, \tilde{M} is of finite D'Angelo map $\Rightarrow F$ is CR transversal.
- Ebenfelt-Son, 2012, Proceedings AMS.
 M is of finite type and *F* is of generic full rank ⇒ *F* is CR transversal.

CR transversality between strictly pseudoconvex domains - Hopf Lemma

Let $F = (\tilde{f}, g)$ be a holomorphic map between two strictly pseudoconvex hypersurfaces $(M, 0) \subset \mathbb{C}^n$ and $(\tilde{M}, 0) \subset \mathbb{C}^N$. Assume

$$M = \{(z, w) \in \mathbf{C}^{n-1} \times \mathbf{C} : r = \Im w - |z|^2 + O(3) = 0\}$$
$$\tilde{M} = \{(\tilde{z}, \tilde{w}) \in \mathbf{C}^{N-1} \times \mathbf{C} : \tilde{r} = \Im \tilde{w} - |\tilde{z}|^2 + O(3) = 0\}$$

CR transversality between strictly pseudoconvex domains - Hopf Lemma

Let $F = (\tilde{f}, g)$ be a holomorphic map between two strictly pseudoconvex hypersurfaces $(M, 0) \subset \mathbb{C}^n$ and $(\tilde{M}, 0) \subset \mathbb{C}^N$. Assume

$$M = \{(z, w) \in \mathbf{C}^{n-1} \times \mathbf{C} : r = \Im w - |z|^2 + O(3) = 0\}$$
$$\tilde{M} = \{(\tilde{z}, \tilde{w}) \in \mathbf{C}^{N-1} \times \mathbf{C} : \tilde{r} = \Im \tilde{w} - |\tilde{z}|^2 + O(3) = 0\}$$

Since $\Im g - |\tilde{f}|^2$ is a superharmonic function in $M^-: \{(z, w) \in \mathbf{C}^{n-1} \times \mathbf{C} : r = \Im w - |z|^2 + O(3) < 0\}$, by Hopf Lemma at 0,

$$\frac{\partial g}{\partial w}(0) = \frac{\partial \Im g}{\partial \Im w}(0) - i\frac{\partial \Re g}{\partial \Im w}(0) = \frac{\partial (\Im g - |\tilde{f}|^2)}{\partial \Im w}|_0 \neq 0.$$

(Notice $\frac{\partial \Re g}{\partial \Im w}(0) = -\frac{\partial \Im g}{\partial \Re w}(0) = 0.$)

Theorem (Baouendi-Ebenfelt-Rothschild, 2007, Comm. Ana. Geom.)

Let $M \subset \mathbb{C}^n$ be a germ of real-analytic hypersurface and U an open neighborhood of M in \mathbb{C}^n . Let $F : U \to \mathbb{C}^N$ is a holomorphic mapping with $F(M) \subset \tilde{M}$. Then either $F(U) \subset \tilde{M}$ or F is transversal to \tilde{M} at F(p)outside a proper real analytic subset if one of the following conditions holds:

- $\tilde{M} \subset \mathbb{C}^N$ is a hyperquadric and $N \leq 3(n \nu_0(M)) 2$.
- *M* is holomorphically nondegenerate and $\min(\nu^+(\tilde{M}), \nu^-(\tilde{M})) + \nu_0(\tilde{M}) \le n-2.$

• *M* is holomorphically nondegenerate and $N + \nu_0(\tilde{M}) \le 2(n-1)$.

Example (Baouendi-Ebenfelt-Rothschild, 2007, Comm. Ana. Geom.)

$$M = H^{2} = \{(z, w) \in \mathbf{C} \times \mathbf{C} : r = \Im w - |z|^{2} = 0\};$$

$$\tilde{M} = H^{5}_{1} = \{(z, w) \in \mathbf{C}^{4} \times \mathbf{C} : \tilde{r} = \Im w + |z_{1}|^{2} - \sum_{j=2}^{4} |z_{j}|^{2} = 0\}.$$

We can verify that

$$F(z,w) = (iz + zw, -iz + zw, w, \sqrt{2}z^2, iw^2)$$

sends M into \tilde{M} and $\tilde{r} \circ F = -2r^2$. F is nowhere CR tranversal on M.

CR Transversality of holomorphic maps between hyperquadrics of the same signature

A rigidity theorem of Baouendi-Huang:

Theorem (Baouendi-Huang, 2005, J. Diff. Geom.)

Let *M* be a small neighborhood of 0 in H_{ℓ}^n with $0 < \ell < \frac{n-1}{2}$, $n \ge 3$. Suppose *F* is a holomorphic map from a neighborhood *U* of *M* in \mathbb{C}^n into \mathbb{C}^N with $F(M) \subset H_{\ell}^N$, $N \ge n$ and F(0) = 0. Then either $F(U) \subset H_{\ell}^N$ or *F* is linear fractional.

CR Transversality of holomorphic maps between hyperquadrics of the same signature

A rigidity theorem of Baouendi-Huang:

Theorem (Baouendi-Huang, 2005, J. Diff. Geom.)

Let *M* be a small neighborhood of 0 in H_{ℓ}^n with $0 < \ell < \frac{n-1}{2}$, $n \ge 3$. Suppose *F* is a holomorphic map from a neighborhood *U* of *M* in \mathbb{C}^n into \mathbb{C}^N with $F(M) \subset H_{\ell}^N$, $N \ge n$ and F(0) = 0. Then either $F(U) \subset H_{\ell}^N$ or *F* is linear fractional.

Under the assumption in Baouendi-huang, either $F(U) \subset H_{\ell}^{N}$ or F is CR transversal to H_{ℓ}^{N} .

Conjecture (Baounedi-Huang, 2005):

Let $M_1 \subset \mathbf{C}^n$ and $M_2 \subset \mathbf{C}^N$ be two (connected) Levi non-degenerate real analytic hypersurfaces with the same signature $\ell > 0$. Here $3 \le n < N$. Let F be a holomorphic map defined in a neighborhood U of M_1 , sending M_1 into M_2 . Then either F is a local CR embedding from M_1 into M_2 or F is totally degenerate in the sense that it maps a neighborhood U of M_1 in \mathbf{C}^n into M_2 .

Theorem (Huang-Z., to appear in Abel Symposia)

Let M_{ℓ} be a real analytic Levi non-degenerate hypersurface of signature ℓ in \mathbb{C}^n with $n \ge 3$ and $0 \in M_{\ell}$. Suppose that F is a holomorphic map in a small neighborhood U of $0 \in \mathbb{C}^n$ such that

$$F(M_{\ell} \cap U) \subset H_{\ell}^N$$

with $N - n < \frac{n-1}{2}$. If $F(U) \not\subset H_{\ell}^{N}$, then F is CR transversal to M_{ℓ} at 0, or equivalently, F is a CR embedding from a small neighborhood of $0 \in M_{\ell}$ into H_{ℓ}^{N} .

Assume *F* is not CR transversal to M_{ℓ} at 0 and $F(U) \not\subset H_{\ell}^{N}$. By Baouendi-Ebenfelt-Rothschild, we can choose a sequence $\{p_j\} \in M_{\ell}$ such that $p_j \to 0$ and *F* is CR transversal at each p_j with $j \ge 1$. Write $q_j := F(p_j)$. Now for each *j*, assume M_{ℓ} and \tilde{M}_{ℓ} are both in regular coordinates at p_j and $F(p_j)$ WLOG. We do normalizations on *F* at *p* following Huang (1999) and Baouendi-Huang (2005). 1)Consider $F_{p_j} := \tau_{F(p_j)} \circ F \circ \sigma_{p_j} = (\tilde{f}_{p_j}, \tilde{g}_{p_j})$, where $\sigma_p \in Aut(H_{\ell}^n)$ and $\tau_{F(p)} \in Aut(H_{\ell}^N)$ such that $\sigma_p(0) = p$ and $\tau_{F(p)}(F(p)) = 0$. We have

$$egin{aligned} ilde{f}_{
ho_j} &= \lambda_j z U_j + ec{a_j} w + O(|(z,w)|^2) \ ilde{g}_{
ho_j} &= \lambda_j^2 w + O(|(z,w)|^2) \end{aligned}$$

with $\lambda_j \rightarrow 0$.

Normalization of a CR transversal map, continued

2) Consider
$$F_{p_j}^{\sharp} = T_j \circ F_{p_j} = (f_{p_j}^{\sharp}, \phi_{p_j}^{\sharp}, g_{p_j}^{\sharp})$$
 where $T_j \in Aut_0(H_\ell^N)$ and
 $T_j(\tilde{z}, \tilde{w}) = \frac{(\lambda_j^{-1}(\tilde{z} - \lambda_j^{-2}\vec{a}_j\tilde{w})\tilde{U}_j^{-1}, \lambda_j^{-2}\tilde{w})}{1 + 2i\langle \tilde{z}, \lambda_j^{-2}\vec{a}_j \rangle_\ell + \lambda_j^{-4}(r_j - i|\vec{a}_j|_\ell^2)\tilde{w}}.$

 $r_j = \frac{1}{2} \Re\{(g_j)''_{ww}(0)\}$. We have

$$f_{p_j}^{\sharp}(z,w) = z + \sum_{k=3}^{\infty} f_{p_j}^{\sharp(k)}(z,w),$$

$$\phi_{p_j}^{\sharp}(z,w) = \sum_{k=2}^{\infty} \phi_{p_j}^{\sharp(k)}(z,w),$$

$$g_{p_j}^{\sharp}(z,w) = w + \sum_{k=5}^{\infty} g_{p_j}^{\sharp(k)}(z,w).$$

Here for a holomorphic function f, $f^{(k)}$ represent the weighted degree k term in the power series expansion of f.

Normalization of a CR transversal map, continued

2) Consider
$$F_{p_j}^{\sharp} = T_j \circ F_{p_j} = (f_{p_j}^{\sharp}, \phi_{p_j}^{\sharp}, g_{p_j}^{\sharp})$$
 where $T_j \in Aut_0(H_\ell^N)$ and
 $T_j(\tilde{z}, \tilde{w}) = \frac{(\lambda_j^{-1}(\tilde{z} - \lambda_j^{-2}\vec{a}_j\tilde{w})\tilde{U}_j^{-1}, \lambda_j^{-2}\tilde{w})}{1 + 2i\langle \tilde{z}, \lambda_j^{-2}\vec{a}_j \rangle_\ell + \lambda_j^{-4}(r_j - i|\vec{a}_j|_\ell^2)\tilde{w}}.$

 $r_j = \frac{1}{2} \Re\{(g_j)''_{ww}(0)\}$. We have

$$f_{P_{j}}^{\sharp}(z,w) = z + \sum_{k=3}^{\infty} f_{P_{j}}^{\sharp(k)}(z,w),$$

$$\phi_{P_{j}}^{\sharp}(z,w) = \sum_{k=2}^{\infty} \phi_{P_{j}}^{\sharp(k)}(z,w),$$

$$g_{P_{j}}^{\sharp}(z,w) = w + \sum_{k=5}^{\infty} g_{P_{j}}^{\sharp(k)}(z,w).$$

Here for a holomorphic function f, $f^{(k)}$ represent the weighted degree k term in the power series expansion of f. **Q**uestion: For each k, what happens for $f_{p_i}^{\sharp}(k), \phi_{p_i}^{\sharp}(k), g_{p_i}^{\sharp}(k)$ when $p_i \to 0$?

Lemma (Huang, 1999, J. Diff. Geom.)

Let $\{\phi_j\}_{j=1}^{n-1}$ and $\{\psi_j\}_{j=1}^{n-1}$ be two families of holomorphic functions in \mathbb{C}^n . Let $B(z,\xi)$ be a real-analytic function in (z,ξ) . Suppose that

$$\sum_{j=1}^{n-1}\phi_j(z)\psi_j(\xi)=B(z,\xi)\langle z,\xi\rangle_\ell.$$

Then
$$B(z,\xi) = \sum_{j=1}^{n-1} \phi_j(z) \psi_j(\xi) = 0.$$

Lemma

Let $\{\phi_j\}_{j=1}^{n-1}$ and $\{\psi_j\}_{j=1}^{n-1}$ be two families of holomorphic polynomials of degree k and m in \mathbb{C}^n , respectively. Let $H(z,\xi), B(z,\xi)$ be two polynomials in (z,ξ) . Suppose that

$$\sum_{j=1}^{n-1}\phi_j(z)\psi_j(\xi)=H(z,\xi)+B(z,\xi)\langle z,\xi\rangle_\ell$$

and $||H|| \leq C$. Then $||B|| \leq \tilde{C}$ and $||\sum_{j=1}^{n-1} \phi_j(z)\psi_j(\xi)|| \leq \tilde{C}$ with \tilde{C} dependent only on (C, k, m, n).

Definition:

$$\|\sum_{|\alpha|\leq k}a_{\alpha}z^{\alpha}\|:=\max_{|\alpha|\leq k}\{|a_{\alpha}|\}.$$

Lemma

Let $\{\phi_{jr}\}_{j=1}^{n-1}$ and $\{\psi_{jr}\}_{j=1}^{n-1}$ be two families of holomorphic polynomials in \mathbb{C}^n , $1 \leq r \leq m$. Let $H(z,\xi), B(z,\xi)$ be two polynomials in (z,ξ) . Suppose that

$$\sum_{r=1}^{m} \left(\sum_{j=1}^{n-1} \phi_{jr}(z) \psi_{jr}(\xi) \right) \langle z, \xi \rangle_{\ell}^{r} = H(z, \xi) + B(z, \xi) \langle z, \xi \rangle_{\ell}^{m+1}$$

and $||H|| \leq C$. Then $||B|| \leq \tilde{C}$ and $||\sum_{j=1}^{n-1} \phi_{jr}(z)\psi_{jr}(\xi)|| \leq \tilde{C}$ for all $1 \leq r \leq m$ with \tilde{C} dependent only on (C, n, m) and the degrees of ϕ_{jr}, ψ_{jr} for all $1 \leq r \leq m$.

Making use of the quantitative version of Huang's Lemma, we show when N < 2n - 1, for each k,

$$\|f_{p_j}^{\sharp}(k)\|, \|\phi_{p_j}^{\sharp}(k)\|, \|g_{p_j}^{\sharp}(k)\| \leq C_k.$$

Hence by a result of Meylan-Mir-Zaitsev, we obtain

Theorem (Huang-Z., 2014)

Let M_{ℓ} be a germ of a smooth Levi non-degenerate hypersurface at 0 of signature ℓ in \mathbb{C}^n , $n \geq 3$. Suppose that there exists a holomorphic map F in a neighborhood U of 0 in \mathbb{C}^n sending M_{ℓ} into H_{ℓ}^N but $F(U) \not\subset H_{\ell}^N$, N < 2n - 1. Then M_{ℓ} is CR embeddable into H_{ℓ}^N near 0. Equivalently, there exists a holomorphic map $\tilde{F} : M_{\ell} \to H_{\ell}^N$ near 0, which is CR transversal to M_{ℓ} at 0.

Assume by contradiction that F neither is CR transversal to M_{ℓ} at 0 nor sends U into H_{ℓ}^{N} . Then there exists a CR immersion F^* sending M_{ℓ} into H_{ℓ}^{N} by the perturbation theorem.

On the other hand, by a rigidity result of Ebenfelt-Huang-Zaitsev, when the codimension is less than $\frac{n-1}{2}$, there exists an automorphism T of H_{ℓ}^{N} such that near $p_{i} \approx 0$, and hence at all points in M_{ℓ} near the origin,

$$F = T \circ F^*.$$

Since T extends to an automorphism of the projective space \mathbf{P}^N and T(0) = 0, F must be CR transversal at 0. This is a contradiction.

Thank you!