Flat solutions to the Cauchy-Riemann Equations

Yuan Zhang Joint with Y. Liu, Z. Chen and Y. Pan

Indiana University - Purdue University Fort Wayne, USA

Midwestern Workshop on Asymptotic Analysis Indiana University, Bloomington, IN

October 9-11th, 2015

Motivation - two Unique continuation Property (UCP) problems

Definition: A smooth function (or map) f is said to be *flat* (at 0) if $D^{\alpha}f(0) = 0$ for all multi-indices α .

Motivation - two Unique continuation Property (UCP) problems

Definition: A smooth function (or map) f is said to be *flat* (at 0) if $D^{\alpha}f(0) = 0$ for all multi-indices α .

$$D_R := \{ z \in \mathbf{C} : |z| = R \}. \ B_R := \{ z \in \mathbf{C}^n : |z| = R \}.$$

Theorem (Chanillo-Sawyer)

Let $V \in L^2(D_R)$ and $u : D_R \subset \mathbb{R}^2 \to \mathbb{R}^N$ be smooth. If $|\Delta u| \leq V |\nabla u|$, then UCP holds, i.e., $u \equiv 0$ on D_R whenever u is flat.

Theorem (Pan)

Let $V \in L^2(D_R)$ and $v : D_R \subset \mathbb{C} \to \mathbb{C}^M$ be smooth. If $|\bar{\partial}v| \leq V|v|$, then UCP holds, i.e., $v \equiv 0$ on D_R whenever v is flat.

The global version of the question (on B_R): No!

The global version of the question (on B_R): No! Examples suggested by Bo-Yong Chen.

The global version of the question (on B_R): No! Examples suggested by Bo-Yong Chen.

What happens in the sense of germs (where f cannot be trivially 0 near 0)?

Lemma

Let f be flat at $0 \in \mathbb{C}$. The following two statements are equivalent: 1) $\bar{\partial}u = fd\bar{z}$ has a flat solution locally. 2) There exists some neighborhood U of 0 such that the following series

$$\sum_{n=0}^{\infty} \left(\int_{U} \frac{f(\xi)}{\xi^{n+1}} d\bar{\xi} \wedge d\xi \right) z^{n}$$

is holomorphic near 0.

Denote the Cauchy-Green operator by $Tf(z) := \frac{-1}{2\pi i} \int_{D_R} \frac{f(\zeta)}{\zeta - z} d\overline{\zeta} \wedge d\zeta$. Then $\overline{\partial}Tf = fd\overline{z}$ on D_R .

Higher order derivative formulas of T on D_R :

Theorem (Pan, preprint)

Let $f \in C^{k+\alpha}(D_R)$ with $0 < \alpha < 1$ and $k \in \mathbb{Z}^+ \cup \{0\}$. Then

$$\partial^{k+1}T(f)(z) = rac{-k!}{2\pi i}\int_{D_R}rac{f(\zeta)-P_k(\zeta,z)}{(\xi-z)^{k+2}}dar{\zeta}\wedge d\zeta$$

on D_R , where $P_k(\zeta, z)$ is the Taylor expansion of f at z of degree k.

See [Liu-Pan-Z., 2015, preprint] for the higher order derivative formulas of T on general domains.

Example

Let $\varphi \in C^{\infty}(\mathbb{R}, \mathbb{C})$ be flat at 0 and g be harmonic on D. Then $\bar{\partial}u(z) = \varphi(|z|)g(z)d\bar{z}$ always has a flat solution locally.

The construction is essentially motivated by Rosay and Coffman-Pan. s: a nondecreasing function on $\overline{\mathbb{R}^+}$, s = 0 in $[0, \frac{1}{4}]$, 0 < s < 1 on $(\frac{1}{4}, \frac{3}{4})$ and s = 1 on $\left[\frac{3}{4}, \infty\right)$; $\{r_n\}_{n=1}^{\infty}$: a decreasing positive sequence, $\lim_{n\to\infty} r_n = 0$. $\Delta r_n := r_n - r_{n+1}$, annuli $A_n := \{z \in \mathbb{C} : r_{n+1} \leq |z| \leq r_n\};$ $\{p(n)\}_{n=0}^{\infty}$: an increasing positive integer sequence with p(0) = 0; $\{F(n)\}_{n=0}^{\infty}$: a positive sequence with F(0) = 1. Let $g_n(z) = F(n)z^{p(n)}$, $\mathcal{X}_n = s(\frac{|\cdot|-r_{n+1}}{\Delta r}) : A_n \to \mathbb{R}$, and $\int g_n(z),$ $z \in A_n$ for odd n, f

$$\mathcal{I}(z) = \begin{cases} \mathcal{X}_n(z)g_{n-1}(z) + (1 - \mathcal{X}_n(z))g_{n+1}(z), & z \in A_n \text{ for even } n, \\ 0, & z = 0. \end{cases}$$

Lemma (Coffman-Pan)

If $\frac{(\Delta r_n/r_n)}{(\Delta r_{n+2})/(r_{n+2})}$ is a bounded sequence and for each integer $k \ge 0$,

$$\lim_{n\to\infty}\frac{F(n+1)(p(n+1))^{k}r_{n}^{p(n+1)-4k}}{(\Delta r_{n}/r_{n})^{k}}=0,$$

then f is smooth and flat at the origin.

The Family **S**

Denote by **S** the set of functions f such that $\frac{(\Delta r_n/r_n)}{(\Delta r_{n+2})/(r_{n+2})}$ is bounded,

$$\lim_{n\to\infty}\frac{F(n+1)(p(n+1))^{k}r_{n}^{p(n+1)-4k}}{(\Delta r_{n}/r_{n})^{k}}=0,$$

as well as either one of the following conditions:

$$\lim_{n \to \infty} \sqrt[p(n)]{F(n)\Delta r_n r_{n+1}} = \infty,$$

$$\lim_{n \to \infty} \sqrt[p(n)]{F(n)(\Delta r_{n-1})^2} = \infty,$$

$$\lim_{n \to \infty} \sqrt[p(n)]{F(n)\Delta r_{n-1} r_n} = \infty,$$

$$\lim_{n \to \infty} \sqrt[p(n)]{F(n)(\Delta r_{n+1})^2} = \infty,$$

$$\lim_{n \to \infty} \sqrt[p(n)]{F(n)\Delta r_{n+1} r_{n+2}} = \infty.$$

Example (Rosay)

$$R = 1$$
, $p(n) = n$, $r_n = 2^{-n+1}$, $F(n) = 2^{n^2/2}$.

Example (Rosay)

$$R = 1$$
, $p(n) = n$, $r_n = 2^{-n+1}$, $F(n) = 2^{n^2/2}$.

Example

R = 1. p(n), t(n) and q(n) are polynomials of degree d_p , d_t and d_q with positive leading coefficients, t(1) = 0, $d_q > d_p$, $d_q > d_t$ and $d_q < d_p + d_t$. Let $r_n := 2^{-t(n)}$, $F(n) := 2^{q(n)}$.

Theorem

For every $f \in \mathbf{S}$, there does not exist a flat smooth u such that $\bar{\partial}u = fd\bar{z}$ near the origin.

Theorem

For every $f \in \mathbf{S}$, there does not exist a flat smooth u such that $\bar{\partial}u = fd\bar{z}$ near the origin.

Theorem

There exists a family of germs of $\bar{\partial}$ -closed (0,1) forms, flat at $0 \in \mathbb{C}^n$, such that for every f in this family, the Cauchy-Riemann equation $\bar{\partial}u = f$ has no flat solution in the sense of germs.

Theorem (Hörmander, Acta. Math., 1965)

Let Ω be a bounded pseudoconvex open set in \mathbb{C}^n , Let δ be the diameter of Ω , and let ϕ be a plurisubharmonic function in Ω . For every $\overline{\partial}$ -closed $f \in L^2_{(0,q)}(\Omega, \phi), q > 0$, one can find $u \in L^2_{(0,q-1)}(\Omega, \phi)$ satisfying $\overline{\partial}u = f$ in Ω and

$$q\int_{\Omega}|u|^2e^{-\phi}dV\leq e\delta^2\int_{\Omega}|f|^2e^{-\phi}dV.$$

Theorem (Hörmander, Acta. Math., 1965)

Let Ω be a bounded pseudoconvex open set in \mathbb{C}^n , Let δ be the diameter of Ω , and let ϕ be a plurisubharmonic function in Ω . For every $\overline{\partial}$ -closed $f \in L^2_{(0,q)}(\Omega, \phi), q > 0$, one can find $u \in L^2_{(0,q-1)}(\Omega, \phi)$ satisfying $\overline{\partial}u = f$ in Ω and $\int |u|^2 = \phi |u| = \delta^2 \int |u|^2 = \phi |u|$

$$q\int_{\Omega}|u|^{2}e^{-\phi}dV\leq e\delta^{2}\int_{\Omega}|f|^{2}e^{-\phi}dV.$$

When q = 1, a minimal solution to $\bar{\partial}u = f$ on Ω is the solution that is orthogonal to the space of holomorphic functions with respect to $L^2(\Omega, \phi)$ norm.

Is the restriction of a minimal solution minimal?

 Ω_1, Ω_2 : smooth bounded pseudoconvex domains, $\Omega_2 \subset \Omega_1$; ϕ : a bounded plurisubharmonic function in Ω_1 ; f: a $\overline{\partial}$ -closed (0,1) form in Ω_1 . Consider the minimal solution u_1 to

$$\bar{\partial} u = f, \ \Omega_1$$

with respect to $L^2(\Omega_1, \phi)$ norm and the minimal solution u_2 to

$$\bar{\partial} u = f|_{\Omega_2}, \ \Omega_2$$

with respect to $L^2(\Omega_2, \phi|_{\Omega_2})$ norm.

Question: Is $u_2 = u_1|_{\Omega_2}$?

Is the restriction of a minimal solution minimal?

 Ω_1, Ω_2 : smooth bounded pseudoconvex domains, $\Omega_2 \subset \Omega_1$; ϕ : a bounded plurisubharmonic function in Ω_1 ; f: a $\overline{\partial}$ -closed (0,1) form in Ω_1 . Consider the minimal solution u_1 to

$$\bar{\partial} u = f, \ \Omega_1$$

with respect to $L^2(\Omega_1, \phi)$ norm and the minimal solution u_2 to

$$\bar{\partial} u = f|_{\Omega_2}, \ \Omega_2$$

with respect to $L^2(\Omega_2, \phi|_{\Omega_2})$ norm.

Question: Is $u_2 = u_1|_{\Omega_2}$?

In general, No!

Is the restriction of a minimal solution minimal?

 Ω_1, Ω_2 : smooth bounded pseudoconvex domains, $\Omega_2 \subset \Omega_1$; ϕ : a bounded plurisubharmonic function in Ω_1 ; f: a $\overline{\partial}$ -closed (0,1) form in Ω_1 . Consider the minimal solution u_1 to

$$\bar{\partial} u = f, \ \Omega_1$$

with respect to $L^2(\Omega_1, \phi)$ norm and the minimal solution u_2 to

$$\bar{\partial} u = f|_{\Omega_2}, \ \Omega_2$$

with respect to $L^2(\Omega_2, \phi|_{\Omega_2})$ norm.

Question: Is $u_2 = u_1|_{\Omega_2}$?

In general, No! Examples?

Examples

Examples: Let $\tilde{f} \in \mathbf{S}$ and consider $f(z) := \tilde{f}(z_1) d\bar{z}_1$.

Conclusion: For every f above, any given bounded plurisubharmonic weight function ϕ on B_1 and positive decreasing sequence $r_n(<1) \rightarrow 0$, the minimal solution u_n to $\bar{\partial}u = f|_{B_{r_n}}$ on B_{r_n} with respect to $L^2(B_{r_n}, \phi|_{B_{r_n}})$ norm is not the restriction of u_1 onto B_{r_n} .

Examples: Let $\tilde{f} \in \mathbf{S}$ and consider $f(z) := \tilde{f}(z_1) d\bar{z}_1$.

Conclusion: For every f above, any given bounded plurisubharmonic weight function ϕ on B_1 and positive decreasing sequence $r_n(<1) \rightarrow 0$, the minimal solution u_n to $\bar{\partial}u = f|_{B_{r_n}}$ on B_{r_n} with respect to $L^2(B_{r_n}, \phi|_{B_{r_n}})$ norm is not the restriction of u_1 onto B_{r_n} .

Sketch of the proof: If not, then for each N, when n is large enough,

$$\begin{split} \int_{B_{r_n}} |u_1|^2 dV &\leq C \int_{B_{r_n}} |u_n|^2 e^{-\phi} dV \leq C r_n^2 \int_{B_{r_n}} |f(z_1)|^2 e^{-\phi} dV \\ &\leq C r_n^2 \int_{B_{r_n}} |f(z_1)|^2 dV \leq C r_n^N. \end{split}$$

 \Rightarrow u_1 is flat. Contradiction!

Inspired by an example of Z. Błocki, we have

Example: Let f_j and g be holomorphic in B_R such that g(0) = 0 and $\frac{\partial g}{\partial z_j} = f_j$ in B_R . Then given any bounded and radially symmetric plurisubharmonic weight ϕ on B_R , $u(z) = \overline{g(z)}|_{B_r}$ is the minimal solution to $\overline{\partial}u(z) = \overline{f_j(z)}d\overline{z}_j|_{B_r}$ in B_r in $L^2(B_r, \phi|_{B_r})$ norm for every $r \leq R$.

Thank you!