Unique continuation for $\bar{\partial}$ with square-integrable potentials

Yuan Zhang

joint with Yifei Pan

Purdue University Fort Wayne

MWAA workshop at PFW October 7th-9th, 2022

A fact/An example:

Let Ω be a domain in \mathbb{R}^d . Consider the Laplace equation: $\Delta u = 0$ on Ω . \implies Any smooth solution u satisfying

$$\partial_x^m u(x_0) = 0$$
, for all $m \in \mathbb{Z}^+ \cup \{0\}$

at some point $x_0 \in \Omega$ vanished identically on Ω .

A fact/An example:

Let Ω be a domain in \mathbb{R}^d . Consider the Laplace equation: $\Delta u = 0$ on Ω . \Longrightarrow Any smooth solution u satisfying

$$\partial_x^m u(x_0) = 0$$
, for all $m \in \mathbb{Z}^+ \cup \{0\}$

at some point $x_0 \in \Omega$ vanished identically on Ω .

A further fact:

Any weak solution $u \in H^2_{loc}(\Omega)$ to $\Delta u = 0$ on Ω satisfying

$$\lim_{r \to 0} r^{-m} \int_{|x - x_0| < r} |u(x)|^2 dv_x = 0, \tag{1}$$

at x_0 for all $m \in \mathbb{Z}^+ \cup \{0\}$ vanishes identically.

Definition: A function $u \in L^2_{loc}(\Omega)$ is said to vanish to infinite order, or flat, in L^2 sense at $x_0 \in \Omega$ if (1) holds.

Unique continuation property

Let Ω be a domain in \mathbb{R}^d . Consider a differential equation

$$P_m(x,\partial_x) u = 0, (2)$$

where $u = (u_1, \dots, u_{d'}) : \Omega \to \mathbb{R}^{d'}$ with $u \in H^m_{loc}(\Omega)$.

Definition

- (2) is said to satisfy the *strong unique continuation property* (strong UCP), if every solution that vanishes to infinite order in L^2 sense at a point $z_0 \in \Omega$ vanishes identically.
- (2) is said to satisfy the weak unique continuation property (weak UCP), if every solution that vanishes in an open subset vanishes identically.

Remark: strong UCP \implies weak UCP.

Unique continuation for $\bar{\partial}$

Question:

Let Ω be a domain in \mathbb{C}^n and $V \in L^2_{loc}(\Omega)$. Consider the following inequality

$$|\bar{\partial}u| \le V|u|,\tag{3}$$

where $u = (u_1, \dots, u_N) : \Omega \to \mathbb{C}^N$ with $u \in H^1_{loc}(\Omega)$. Does UCP holds for (3)?

Motivation

 Boundary behavior of holomorphic functions [Bell-Lempert, JDG, 1990]:

 $\Omega_1 \subset \mathbb{C}, \Omega_2 \subset \mathbb{C}^N$ with desired regularity and geometry; $f: \Omega_1 \to \Omega_2$ be proper holomorphic with certain regularity on $b\Omega_1$. $\implies f$ is flat at $z_0 \in b\Omega_1$ iff UCP holds for

$$\bar{\partial}u=Vu,$$

for some potential V determined by Ω_1, Ω_2 . Bell-Lempert proved the strong UCP holds when n = 1 and $V \in L^{\infty}$.

Motivation

 Boundary behavior of holomorphic functions [Bell-Lempert, JDG, 1990]:

 $\Omega_1 \subset \mathbb{C}, \Omega_2 \subset \mathbb{C}^N$ with desired regularity and geometry; $f: \Omega_1 \to \Omega_2$ be proper holomorphic with certain regularity on $b\Omega_1$. $\implies f$ is flat at $z_0 \in b\Omega_1$ iff UCP holds for

$$\bar{\partial}u=Vu$$
,

for some potential V determined by Ω_1, Ω_2 . Bell-Lempert proved the strong UCP holds when n = 1 and $V \in L^{\infty}$.

Almost complex structure:

(M, J): an almost complex manifold with desired regularity; $u_1, u_2 : D(\subset \mathbb{C}) \to M$ are J-holomorphic curves near $z_0 \in M$ (namely, du_j commutes with J), and $u_1 - u_2$ is flat at z_0 .

 $\implies u_1 \equiv u_2$ iff UCP holds for

$$|\bar{\partial}u|\leq V|u|,$$

for some potential V determined by almost complex structures.

L^2 potential is critical

Assume $V \in L^p$, p < 2.

• The strong UCP fails in general.

Example

For each $0 , choose <math>\epsilon \in (0, \frac{2-p}{p})$ (so that $(\epsilon + 1)p < 2$). Let $V = \frac{\epsilon}{2|z|^{\epsilon+1}} \in L^p(D)$ on \mathbb{C} . $u_{\epsilon}(z) := e^{-\frac{1}{|z|^{\epsilon}}}$ vanishes to infinite order at 0 and satisfies $\bar{\partial} u = Vu$.

L^2 potential is critical

Assume $V \in L^p$, p < 2.

• The strong UCP fails in general.

Example

For each $0 , choose <math>\epsilon \in (0, \frac{2-p}{p})$ (so that $(\epsilon+1)p < 2$). Let $V = \frac{\epsilon}{2|z|^{\epsilon+1}} \in L^p(D)$ on \mathbb{C} . $u_{\epsilon}(z) := e^{-\frac{1}{|z|^{\epsilon}}}$ vanishes to infinite order at 0 and satisfies $\bar{\partial} u = Vu$.

The weak UCP fails in general.

Example (Mandache, Comm. Anal. Geom. 2002)

There exist non-trivial $u \in C_c^{\infty}(\mathbb{C})$ and $V \in L^p(\mathbb{C}), 0 , such that <math>u$ satisfies $\bar{\partial} u = Vu$.

UCP for Laplacian

Theorem (Chanillo-Sawyer, Trans. Amer. Math. Soc. 1990)

Let Ω be a domain in \mathbb{R}^d with d=2. Suppose $u=(u_1,\ldots,u_{d'}):\Omega\to\mathbb{R}^{d'}$ with $u\in H^2_{loc}(\Omega)$ and satisfies

$$|\Delta u| \le V|\nabla u| \tag{4}$$

for some $V \in L^2_{loc}(\Omega)$. If u vanishes to infinite order at $z_0 \in \Omega$, then u vanishes identically.

UCP for Laplacian

Theorem (Chanillo-Sawyer, Trans. Amer. Math. Soc. 1990)

Let Ω be a domain in \mathbb{R}^d with d=2. Suppose $u=(u_1,\ldots,u_{d'}):\Omega\to\mathbb{R}^{d'}$ with $u\in H^2_{loc}(\Omega)$ and satisfies

$$|\Delta u| \le V|\nabla u| \tag{4}$$

for some $V \in L^2_{loc}(\Omega)$. If u vanishes to infinite order at $z_0 \in \Omega$, then u vanishes identically.

Remark: The result holds when d=3,4 and $V\in L^d_{loc}(\Omega)$ [Wolff, Rev Math. Iberoamericana, 1990].

UCP for Laplacian

Theorem (Chanillo-Sawyer, Trans. Amer. Math. Soc. 1990)

Let Ω be a domain in \mathbb{R}^d with d=2. Suppose $u=(u_1,\ldots,u_{d'}):\Omega\to\mathbb{R}^{d'}$ with $u\in H^2_{loc}(\Omega)$ and satisfies

$$|\Delta u| \le V|\nabla u| \tag{4}$$

for some $V \in L^2_{loc}(\Omega)$. If u vanishes to infinite order at $z_0 \in \Omega$, then u vanishes identically.

Remark: The result holds when d=3,4 and $V\in L^d_{loc}(\Omega)$ [Wolff, Rev Math. Iberoamericana, 1990].

Example (Wolff, Comm. Anal. Geom. 1994)

There exists a smooth real-valued function on \mathbb{R}^d , $d \geq 5$, which vanishes to infinite order at the origin and satisfies (4) with $V \in L^d(\mathbb{R}^d)$.

Non-equivalence between Δ and $\bar{\partial}$ when d=2

Question:

UCP holds for $|\bar{\partial}v| \leq V|v| \stackrel{???}{\iff} UCP$ holds for $|\Delta u| \leq V|\nabla u|$.

Non-equivalence between Δ and $\bar{\partial}$ when d=2

Question:

UCP holds for $|\bar{\partial}v| \leq V|v| \stackrel{???}{\iff} UCP$ holds for $|\Delta u| \leq V|\nabla u|$.

• UCP holds for $|\bar{\partial}v| \leq V|v| \Longrightarrow$ UCP holds for $|\Delta u| \leq V|\nabla u|$. Use $\Delta = 4\bar{\partial}\partial$ and $|\partial u| = \frac{1}{2}|\nabla u|$ (since u is real-valued). Then $v := \partial u$ is flat and satisfies $|\bar{\partial}v| \leq V|v|$.

Non-equivalence between Δ and $\bar{\partial}$ when d=2

Question:

UCP holds for $|\bar{\partial}v| \leq V|v| \stackrel{???}{\iff} UCP$ holds for $|\Delta u| \leq V|\nabla u|$.

- UCP holds for $|\bar{\partial}v| \leq V|v| \Longrightarrow$ UCP holds for $|\Delta u| \leq V|\nabla u|$. Use $\Delta = 4\bar{\partial}\partial$ and $|\partial u| = \frac{1}{2}|\nabla u|$ (since u is real-valued). Then $v := \partial u$ is flat and satisfies $|\bar{\partial}v| \leq V|v|$.
- UCP holds for $|\Delta u| \leq V |\nabla u| \stackrel{???}{\Longrightarrow}$ UCP holds for $|\bar{\partial} v| \leq V |v|$. Argue reversely. However an obstruction appears: solve u to $\partial u = v$ in the flat category.

An obstruction in flat category

Theorem (Liu-Pan-Z., Integral Equations Operator Theory, to appear)

Let f be a flat germ at the origin in \mathbb{C} . The following two statements are equivalent:

- 1) The Cauchy-Riemann equation $\bar{\partial}u=fd\bar{z}$ has a solution that is flat at the origin in the sense of germs.
- 2) There exists some neighborhood $U \subset \mathbb{C}$ of the origin such that

$$\sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{U} \frac{f(\zeta)}{\zeta^{n+1}} d\bar{\zeta} \wedge d\zeta \right) z^{n}$$

is holomorphic near the origin.

Main theorem

Theorem (Pan-Z., preprint 2022)

Let Ω be a domain in \mathbb{C} . Suppose $u=(u_1,\ldots,u_N):\Omega\to\mathbb{C}^N$ with $u\in H^1_{loc}(\Omega)$ and satisfies $|\bar\partial u|\leq V|u|$ for some $V\in L^2_{loc}(\Omega)$. If u vanishes to infinite order at $z_0\in\Omega$, then u vanishes identically.

Main theorem

Theorem (Pan-Z., preprint 2022)

Let Ω be a domain in \mathbb{C} . Suppose $u=(u_1,\ldots,u_N):\Omega\to\mathbb{C}^N$ with $u\in H^1_{loc}(\Omega)$ and satisfies $|\bar\partial u|\leq V|u|$ for some $V\in L^2_{loc}(\Omega)$. If u vanishes to infinite order at $z_0\in\Omega$, then u vanishes identically.

Example

For $0<\epsilon<\frac{1}{2}$, let

$$V(z) = \frac{\epsilon}{2|z| \left(-\ln|z|\right)^{1-\epsilon}}$$

on $D_{\frac{1}{2}}$. Then $V \in L^2(D_{\frac{1}{2}})$. Then $|\bar{\partial}u| = V|u|$ has no nontrivial flat solution.

Main theorem

Theorem (Pan-Z., preprint 2022)

Let Ω be a domain in \mathbb{C} . Suppose $u=(u_1,\ldots,u_N):\Omega\to\mathbb{C}^N$ with $u\in H^1_{loc}(\Omega)$ and satisfies $|\bar\partial u|\leq V|u|$ for some $V\in L^2_{loc}(\Omega)$. If u vanishes to infinite order at $z_0\in\Omega$, then u vanishes identically.

Example

For $0 < \epsilon < \frac{1}{2}$, let

$$V(z) = \frac{\epsilon}{2|z| \left(-\ln|z|\right)^{1-\epsilon}}$$

on $D_{\frac{1}{2}}$. Then $V \in L^2(D_{\frac{1}{2}})$. Then $|\bar{\partial}u| = V|u|$ has no nontrivial flat solution.

- $u_0(z)=e^{-(-\ln|z|)^\epsilon}\in H^1(D_{\frac{1}{2}})$ and satisfies $|\bar\partial u|=V|u|$ on $D_{\frac{1}{2}}.$ However, u_0 is not flat anywhere on $D_{\frac{1}{2}}.$
- $V \notin L^p(D_{\frac{1}{2}})$ for any p > 2.

Weak UCP in \mathbb{C}^n , n > 2

Theorem

Let Ω be a domain in \mathbb{C}^n . Suppose $u=(u_1,\ldots,u_N):\Omega\to\mathbb{C}^N$ with $u\in H^1_{loc}(\Omega)$ and satisfies $|\bar\partial u|\leq V|u|$ for some $V\in L^2_{loc}(\Omega)$. If u vanishes in an open subset of Ω , then u vanishes identically.

Weak UCP in \mathbb{C}^n , $n \geq 2$

Theorem

Let Ω be a domain in \mathbb{C}^n . Suppose $u=(u_1,\ldots,u_N):\Omega\to\mathbb{C}^N$ with $u\in H^1_{loc}(\Omega)$ and satisfies $|\bar\partial u|\leq V|u|$ for some $V\in L^2_{loc}(\Omega)$. If u vanishes in an open subset of Ω , then u vanishes identically.

Remark: 1. The weak UCP fails for $|\bar{\partial}u| \leq V|u|$ if the potential V is at most $L^p, p < 2$.

Example (Mandache, Comm. Anal. Geom. 2002)

For each $0 , there exist nontrivial <math>u \in C_c^{\infty}(\mathbb{C}^2)$, $V \in L^p(\mathbb{C}^2)$ such that u satisfies $|\bar{\partial}u| \leq V|u|$ on \mathbb{C}^2 .

Weak UCP in \mathbb{C}^n , $n \geq 2$

Theorem

Let Ω be a domain in \mathbb{C}^n . Suppose $u=(u_1,\ldots,u_N):\Omega\to\mathbb{C}^N$ with $u\in H^1_{loc}(\Omega)$ and satisfies $|\bar\partial u|\leq V|u|$ for some $V\in L^2_{loc}(\Omega)$. If u vanishes in an open subset of Ω , then u vanishes identically.

Remark: 1. The weak UCP fails for $|\bar{\partial}u| \leq V|u|$ if the potential V is at most $L^p, p < 2$.

Example (Mandache, Comm. Anal. Geom. 2002)

For each $0 , there exist nontrivial <math>u \in C_c^{\infty}(\mathbb{C}^2)$, $V \in L^p(\mathbb{C}^2)$ such that u satisfies $|\bar{\partial}u| \leq V|u|$ on \mathbb{C}^2 .

2. The weak UCP for $|\Delta u| \leq V |\nabla u|$ holds with $V \in L^{dim_{\mathbb{R}}\Omega}_{loc}$ [Wolff, Geom. Funct. Anal, 1992], and fails with $V \in L^p(\Omega), p < dim_{\mathbb{R}}\Omega$. [Koch-Tataru, Crelles Jour, 2002].

Proof of the main theorem

Lemma 1

Let $u \in H^1(\mathbb{C})$ has compact support. Then for almost every $z \in \mathbb{C}$,

$$u(z) = \frac{1}{\pi} \int_{\mathbb{C}} \frac{\bar{\partial} u(\zeta)}{z - \zeta} dv_{\zeta}.$$

If in addition that u vanishes near 0, then for any $m \ge 0$,

$$\int_{\mathbb{C}} \frac{\bar{\partial} u(\zeta)}{\zeta^{m+1}} dv_{\zeta} = 0.$$

The Riesz fractional integral of f of order 1 is

$$I_1f(z):=\int_{\mathbb{C}}\frac{f(\zeta)}{|\zeta-z|}dv_{\zeta},\ \ z\in\mathbb{C}.$$

 $L^2_V(\Omega)$ with respect to a given V(>0) on $\Omega\subset\mathbb{C}$ is the collection of all functions f on Ω such that

$$||f||_{L^2_V(\Omega)}:=\left(\int_{\Omega}|f(z)|^2V(z)dv_z\right)^{\frac{1}{2}}<\infty.$$

Lemma 2 (Weighted Hardy-Littlewood-Sobolev inequality)

Let $V \in L^2(\mathbb{C})$. Then there exists a universal constant C such that for any $f \in L^2_{V^{-1}}(\mathbb{C})$,

$$||I_1 f||_{L^2_V(\mathbb{C})} \le C ||V||_{L^2(\mathbb{C})} ||f||_{L^2_{V^{-1}}(\mathbb{C})}.$$

The Riesz fractional integral of f of order 1 is

$$I_1f(z):=\int_{\mathbb{C}}\frac{f(\zeta)}{|\zeta-z|}dv_{\zeta},\ \ z\in\mathbb{C}.$$

 $L^2_V(\Omega)$ with respect to a given V(>0) on $\Omega\subset\mathbb{C}$ is the collection of all functions f on Ω such that

$$||f||_{L^2_V(\Omega)}:=\left(\int_{\Omega}|f(z)|^2V(z)dv_z\right)^{\frac{1}{2}}<\infty.$$

Lemma 2 (Weighted Hardy-Littlewood-Sobolev inequality)

Let $V \in L^2(\mathbb{C})$. Then there exists a universal constant C such that for any $f \in L^2_{V^{-1}}(\mathbb{C})$,

$$||I_1 f||_{L^2_V(\mathbb{C})} \le C ||V||_{L^2(\mathbb{C})} ||f||_{L^2_{V-1}(\mathbb{C})}.$$

Remark: If $V \in L^p(\mathbb{C}), p > 2$, then by Hölder inequality,

$$\|\mathit{I}_1 f\|_{L^2_V(D_1)} \leq \mathit{C}_\rho \|V\|_{L^p(D_1)} \|f\|_{L^2_{V^{-1}}(D_1)} \ \ \text{for all} \ \ f \in L^2_{V^{-1}}(D_1).$$

Y. Zhang (PFW)

Assume u is flat at z = 0.

- Choose $\eta \in C_c^{\infty}(\mathbb{C})$ such that $\eta = 1$ on D_r ; $0 \le \eta \le 1$ and $|\nabla \eta| \le \frac{2}{r}$ on $D_{2r} \setminus D_r$; $\eta = 0$ outside D_{2r} .
- Let $\psi \in C^{\infty}(\mathbb{C})$ be such that $\psi = 0$ in D_1 ; $0 \le \psi \le 1$ and $|\nabla \psi| \le 2$ on $D_2 \setminus D_1$; $\psi = 1$ outside D_2 . Let $\psi_k(z) = \psi(kz), z \in \mathbb{C}, k \ge \frac{2}{r}$.
- $\implies \psi_k \eta u \in H^1(\mathbb{C})$ and is supported inside $D_{2r} \setminus D_{\frac{1}{\iota}}$.

Assume u is flat at z = 0.

- Choose $\eta \in C_c^{\infty}(\mathbb{C})$ such that $\eta = 1$ on D_r ; $0 \le \eta \le 1$ and $|\nabla \eta| \le \frac{2}{r}$ on $D_{2r} \setminus D_r$; $\eta = 0$ outside D_{2r} .
- Let $\psi \in C^{\infty}(\mathbb{C})$ be such that $\psi = 0$ in D_1 ; $0 \le \psi \le 1$ and $|\nabla \psi| \le 2$ on $D_2 \setminus D_1$; $\psi = 1$ outside D_2 . Let $\psi_k(z) = \psi(kz), z \in \mathbb{C}, k \ge \frac{2}{r}$.

 $\implies \psi_k \eta u \in H^1(\mathbb{C})$ and is supported inside $D_{2r} \setminus D_{\frac{1}{k}}$.

On D_r ,

$$\begin{aligned} |\psi_k(z)|^2 |u(z)|^2 &= \frac{1}{\pi^2} \left| \int_{\mathbb{C}} \frac{\bar{\partial}(\psi_k(\zeta)\eta(\zeta)u(\zeta))}{z - \zeta} dv_{\zeta} \right|^2 \\ &= \frac{1}{\pi^2} \left| \int_{\mathbb{C}} \left(\frac{1}{z - \zeta} + \sum_{l=0}^{m-1} \frac{z^l}{\zeta^{l+1}} \right) \bar{\partial} \left(\psi_k(\zeta)\eta(\zeta)u(\zeta) \right) dv_{\zeta} \right|^2. \end{aligned}$$

$$\begin{split} &\int_{D_{r}} \frac{|\psi_{k}(z)|^{2}|u(z)|^{2}}{|z|^{2m}} V(z) dv_{z} \\ &= \frac{1}{\pi^{2}} \int_{D_{r}} \frac{1}{|z|^{2m}} \left| \int_{\mathbb{C}} \left(\frac{1}{z - \zeta} + \sum_{l=0}^{m-1} \frac{z^{l}}{\zeta^{l+1}} \right) \bar{\partial} \left(\psi_{k}(\zeta) \eta(\zeta) u(\zeta) \right) dv_{\zeta} \right|^{2} V(z) dv_{z}. \\ &\text{Apply } \frac{1}{z - \zeta} + \sum_{l=0}^{m-1} \frac{z^{l}}{\zeta^{l+1}} = \frac{z^{m}}{\zeta^{m}(z - \zeta)}, \text{ for all } \zeta \neq z, 0. \Longrightarrow \\ &\leq \frac{1}{\pi^{2}} \int_{D_{r}} \left(\int_{\mathbb{C}} \frac{1}{|z - \zeta|} \frac{|\bar{\partial} \left(\psi_{k}(\zeta) \eta(\zeta) u(\zeta) \right)|}{|\zeta|^{m}} dv_{\zeta} \right)^{2} V(z) dv_{z} \\ &\leq \frac{1}{\pi^{2}} \left\| I_{1} \left(\frac{|\bar{\partial} \left(\psi_{k} \eta u \right)|}{|\cdot|^{m}} \right) \right\|_{L^{2}_{V}(\mathbb{C})}^{2} \\ &\leq \frac{C}{\pi^{2}} \| V \|_{L^{2}(D_{r})}^{2} \int_{\mathbb{C}} \frac{|\bar{\partial} \left(\psi_{k}(z) \eta(z) u(z) \right)|^{2}}{|z|^{2m}} \frac{dv_{z}}{V(z)}. \end{split}$$

Let r << 1 such that $\|V\|_{L^2(D_r)}^2 \leq \frac{\pi^2}{2C}$ and $V \geq C_r$ on D_{2r} .

$$\begin{split} & \int_{D_{r}} \frac{|\psi_{k}(z)|^{2}|u(z)|^{2}}{|z|^{2m}} V(z) dv_{z} \\ \leq & \frac{1}{2} \int_{\mathbb{C}} \frac{|\bar{\partial}\psi_{k}(z)|^{2}|u(z)|^{2}}{|z|^{2m}V(z)} dv_{z} + \frac{1}{2} \int_{D_{r}} \frac{|\psi_{k}(z)|^{2}|\bar{\partial}u(z)|^{2}}{|z|^{2m}V(z)} dv_{z} \\ & + \frac{1}{2} \int_{D_{2r} \setminus D_{r}} \frac{|\bar{\partial}(\eta(z)u(z))|^{2}}{|z|^{2m}V(z)} dv_{z} \end{split}$$

 \Longrightarrow

$$\begin{split} &\int_{D_r} \frac{|\psi_k(z)|^2 |u(z)|^2}{|z|^{2m}} V(z) dv_z \\ &\leq \int_{\mathbb{C}} \frac{|\bar{\partial} \psi_k(z)|^2 |u(z)|^2}{|z|^{2m} V(z)} dv_z + \int_{D_{2r} \setminus D_r} \frac{|\bar{\partial} (\eta(z) u(z))|^2}{|z|^{2m} V(z)} dv_z. \end{split}$$

Note that

$$\lim_{k\to\infty}\int_{\mathbb{C}}\frac{|\bar{\partial}\psi_k(z)|^2|u(z)|^2}{|z|^{2m}V(z)}dv_z=0.$$

Indeed,

- $\bar{\partial}\psi_k$ is supported on $D_{\frac{2}{k}}\setminus D_{\frac{1}{k}}$, and $|\nabla\psi_k|pprox k$;
- $V > C_r$ on $D_{\frac{2}{\nu}}(\subset D_r)$.

 \Longrightarrow

$$\begin{split} \int_{\mathbb{C}} \frac{|\bar{\partial}\psi_{k}(z)|^{2}|u(z)|^{2}}{|z|^{2m}V(z)} dv_{z} &\leq \int_{\frac{1}{k}<|z|<\frac{2}{k}} \frac{k^{2}|u(z)|^{2}}{|z|^{2m}C_{r}} dv_{z} \\ &\leq \frac{k^{2m+2}}{C_{r}} \int_{|z|<\frac{2}{k}} |u(z)|^{2} dv_{z} \to 0 \end{split}$$

as $k \to \infty$.

Let $k \to \infty$. Then for each $m \in \mathbb{Z}^+$,

$$\int_{D_r} \frac{|u(z)|^2}{|z|^{2m}} V(z) dv_z \leq \int_{D_{2r} \setminus D_r} \frac{|\bar{\partial} \left(\eta(z) u(z) \right)|^2}{|z|^{2m} V(z)} dv_z.$$

 \Longrightarrow

$$\frac{1}{|\frac{r}{2}|^{2m}} \int_{D_{\frac{r}{2}}} |u(z)|^2 V(z) dv_z \le \frac{1}{r^{2m}} \int_{D_{2r} \setminus D_r} \frac{|\bar{\partial} (\eta(z)u(z))|^2}{V(z)} dv_z.$$

$$2^{2m} \int_{D_r} |u(z)|^2 V(z) dv_z \le \tilde{C}_r ||u||^2_{H^1(D_{2r})},$$

Letting $m \to \infty$, we have u = 0 on $D_{\frac{r}{2}}$.

Further remarks when $V = \frac{C}{|z|}$

Note that $\frac{1}{|z|} \notin L^2_{loc}(\mathbb{C})$.

Remarks:

• The strong UCP holds for $|\bar{\partial}u| \leq V|u|$ if n = N = 1 and $V = \frac{C}{|z|}$ (Pan, Comm PDE. 1992).

Further remarks when $V = \frac{C}{|z|}$

Note that $\frac{1}{|z|} \notin L^2_{loc}(\mathbb{C})$.

Remarks:

- The strong UCP holds for $|\bar{\partial}u| \leq V|u|$ if n = N = 1 and $V = \frac{C}{|z|}$ (Pan, Comm PDE. 1992).
- The strong UCP fails for $V=\frac{C}{|z|}$ when N=2 and C is large. (Alinhac-Baouendi, Duke Math J. 1990) and (Pan-Wolff, J. Geom Anal 1998).

Thanks!